skip to main content

Search for: All records

Creators/Authors contains: "Freedman, Wendy L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The current Cepheid-calibrated distance ladder measurement of H 0 is reported to be in tension with the values inferred from the cosmic microwave background (CMB), assuming standard cosmology. However, some tip of the red giant branch (TRGB) estimates report H 0 in better agreement with the CMB. Hence, it is critical to reduce systematic uncertainties in local measurements to understand the Hubble tension. In this paper, we propose a uniform distance ladder between the second and third rungs, combining Type Ia supernovae (SNe Ia) observed by the Zwicky Transient Facility (ZTF) with a TRGB calibration of their absolute luminosity. A large, volume-limited sample of both calibrator and Hubble flow SNe Ia from the same survey minimizes two of the largest sources of systematics: host-galaxy bias and nonuniform photometric calibration. We present results from a pilot study using the existing TRGB distance to the host galaxy of ZTF SN Ia SN 2021rhu (aka ZTF21abiuvdk) in NGC7814. Combining the ZTF calibrator with a volume-limited sample from the first data release of ZTF Hubble flow SNe Ia, we infer H 0 = 76.94 ± 6.4 km s −1 Mpc −1 , an 8.3% measurement. The error budget is dominated by the singlemore »object calibrating the SN Ia luminosity in this pilot study. However, the ZTF sample includes already five other SNe Ia within ∼20 Mpc for which TRGB distances can be obtained with the Hubble Space Telescope. Finally, we present the prospects of building this distance ladder out to 80 Mpc with James Webb Space Telescope observations of more than 100 ZTF SNe Ia.« less
  2. Abstract

    1991T-like supernovae are the luminous, slow-declining extreme of the Branch shallow-silicon (SS) subclass of Type Ia supernovae. They are distinguished by extremely weak CaiiH & K and Siiiλ6355 and strong Feiiiabsorption features in their optical spectra at pre-maximum phases, and have long been suspected to be over-luminous compared to normal Type Ia supernovae. In this paper, the pseudo-equivalent width of the Siiiλ6355 absorption obtained at light curve phases from ≤ +10 days is combined with the morphology of thei-band light curve to identify a sample of 1991T-like supernovae in the Carnegie Supernova Project II. Hubble diagram residuals show that, at optical as well as near-infrared wavelengths, these events are over-luminous by ∼0.1–0.5 mag with respect to the less extreme Branch SS (1999aa-like) and Branch core-normal supernovae with similarB-band light-curve decline rates.

  3. The Carnegie Supernova Project-II (CSP-II) was an NSF-funded, four-year program to obtain optical and near-infrared observations of a “Cosmology” sample of ˜100 Type Ia supernovae located in the smooth Hubble flow (0.03 ≲ z ≲ 0.10). Light curves were also obtained of a “Physics” sample composed of 90 nearby Type Ia supernovae at z ≤ 0.04 selected for near-infrared spectroscopic timeseries observations. The primary emphasis of the CSP-II is to use the combination of optical and near-infrared photometry to achieve a distance precision of better than 5%. In this paper, details of the supernova sample, the observational strategy, and the characteristics of the photometric data are provided. In a companion paper, the near-infrared spectroscopy component of the project is presented.

    RR Lyrae stars have long been popular standard candles, but significant advances in methodology and technology have been made in recent years to increase their precision as distance indicators. We present multiwavelength (optical UBVRcIc and Gaia G, BP, RP; near-infrared JHKs; mid-infrared [3.6], [4.5]) period–luminosity–metallicity (PLZ), period–Wesenheit–metallicity (PWZ) relations, calibrated using photometry obtained from the Carnegie RR Lyrae Program and parallaxes from the Gaia second data release for 55 Galactic field RR Lyrae stars. The metallicity slope, which has long been predicted by theoretical relations, can now be measured in all passbands. The scatter in the PLZ relations is on the order of 0.2 mag, and is still dominated by uncertainties in the parallaxes. As a consistency check of our PLZ relations, we also measure the distance modulus to the globular cluster M4, the Large Magellanic Cloud and the Small Magellanic Cloud, and our results are in excellent agreement with estimates from previous studies.