Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent Internet-of-Things (IoT) networks span across a multitude of stationary and robotic devices, namely unmanned ground vehicles, surface vessels, and aerial drones, to carry out mission-critical services such as search and rescue operations, wildfire monitoring, and flood/hurricane impact assessment. Achieving communication synchrony, reliability, and minimal communication jitter among these devices is a key challenge both at the simulation and system levels of implementation due to the underpinning differences between a physics-based robot operating system (ROS) simulator that is time-based and a network-based wireless simulator that is event-based, in addition to the complex dynamics of mobile and heterogeneous IoT devices deployed in a real environment. Nevertheless, synchronization between physics (robotics) and network simulators is one of the most difficult issues to address in simulating a heterogeneous multi-robot system before transitioning it into practice. The existing TCP/IP communication protocol-based synchronizing middleware mostly relied on Robot Operating System 1 (ROS1), which expends a significant portion of communication bandwidth and time due to its master-based architecture. To address these issues, we design a novel synchronizing middleware between robotics and traditional wireless network simulators, relying on the newly released real-time ROS2 architecture with a master-less packet discovery mechanism. Additionally, we propose a ground and aerial agents’ velocity-aware customized QoS policy for Data Distribution Service (DDS) to minimize the packet loss and transmission latency between a diverse set of robotic agents, and we offer the theoretical guarantee of our proposed QoS policy. We performed extensive network performance evaluations both at the simulation and system levels in terms of packet loss probability and average latency with line-of-sight (LOS) and non-line-of-sight (NLOS) and TCP/UDP communication protocols over our proposed ROS2-based synchronization middleware. Moreover, for a comparative study, we presented a detailed ablation study replacing NS-3 with a real-time wireless network simulator, EMANE, and masterless ROS2 with master-based ROS1. Our proposed middleware attests to the promise of building a largescale IoT infrastructure with a diverse set of stationary and robotic devices that achieve low-latency communications (12% and 11% reduction in simulation and reality, respectively) while satisfying the reliability (10% and 15% packet loss reduction in simulation and reality, respectively) and high-fidelity requirements of mission-critical applications.more » « less
-
Garoufallou, E. ; Ovalle-Perandones, MA. ; Vlachidis, A (Ed.)
-
We conduct a global comparison of the consumption of energy by human populations throughout the Holocene and statistically quantify coincident changes in the consumption of energy over space and time—an ecological phenomenon known as synchrony. When populations synchronize, adverse changes in ecosystems and social systems may cascade from society to society. Thus, to develop policies that favor the sustained use of resources, we must understand the processes that cause the synchrony of human populations. To date, it is not clear whether human societies display long-term synchrony or, if they do, the poten- tial causes. Our analysis begins to fill this knowledge gap by quantifying the long-term synchrony of human societies, and we hypothesize that the synchrony of human populations results from (i) the creation of social ties that couple populations over smaller scales and (ii) much larger scale, globally convergent tra- jectories of cultural evolution toward more energy-consuming political economies with higher carrying capacities. Our results suggest that the process of globalization is a natural consequence of evolutionary trajectories that increase the carrying capacities of human societies.more » « less
-
The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a "Module of Opportunity", aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available January 1, 2026
-
ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 andbeam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to befor thesetting andfor thesetting.
Published by the American Physical Society 2024 Free, publicly-accessible full text available November 1, 2025 -
Abstract Computing demands for large scientific experiments, such as the CMS experiment at the CERN LHC, will increase dramatically in the next decades. To complement the future performance increases of software running on central processing units (CPUs), explorations of coprocessor usage in data processing hold great potential and interest. Coprocessors are a class of computer processors that supplement CPUs, often improving the execution of certain functions due to architectural design choices. We explore the approach of Services for Optimized Network Inference on Coprocessors (SONIC) and study the deployment of this as-a-service approach in large-scale data processing. In the studies, we take a data processing workflow of the CMS experiment and run the main workflow on CPUs, while offloading several machine learning (ML) inference tasks onto either remote or local coprocessors, specifically graphics processing units (GPUs). With experiments performed at Google Cloud, the Purdue Tier-2 computing center, and combinations of the two, we demonstrate the acceleration of these ML algorithms individually on coprocessors and the corresponding throughput improvement for the entire workflow. This approach can be easily generalized to different types of coprocessors and deployed on local CPUs without decreasing the throughput performance. We emphasize that the SONIC approach enables high coprocessor usage and enables the portability to run workflows on different types of coprocessors.
Free, publicly-accessible full text available December 1, 2025 -
A bstract A measurement is performed of Higgs bosons produced with high transverse momentum (
p T) via vector boson or gluon fusion in proton-proton collisions. The result is based on a data set with a center-of-mass energy of 13 TeV collected in 2016–2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fb− 1. The decay of a high-p THiggs boson to a boosted bottom quark-antiquark pair is selected using large-radius jets and employing jet substructure and heavy-flavor taggers based on machine learning techniques. Independent regions targeting the vector boson and gluon fusion mechanisms are defined based on the topology of two quark-initiated jets with large pseudorapidity separation. The signal strengths for both processes are extracted simultaneously by performing a maximum likelihood fit to data in the large-radius jet mass distribution. The observed signal strengths relative to the standard model expectation are and$$ {4.9}_{-1.6}^{+1.9} $$ for the vector boson and gluon fusion mechanisms, respectively. A differential cross section measurement is also reported in the simplified template cross section framework.$$ {1.6}_{-1.5}^{+1.7} $$ Free, publicly-accessible full text available December 1, 2025 -
Abstract This paper describes the
Combine software package used for statistical analyses by the CMS Collaboration. The package, originally designed to perform searches for a Higgs boson and the combined analysis of those searches, has evolved to become the statistical analysis tool presently used in the majority of measurements and searches performed by the CMS Collaboration. It is not specific to the CMS experiment, and this paper is intended to serve as a reference for users outside of the CMS Collaboration, providing an outline of the most salient features and capabilities. Readers are provided with the possibility to runCombine and reproduce examples provided in this paper using a publicly available container image. Since the package is constantly evolving to meet the demands of ever-increasing data sets and analysis sophistication, this paper cannot cover all details ofCombine . However, the online documentation referenced within this paper provides an up-to-date and complete user guide.Free, publicly-accessible full text available December 1, 2025