skip to main content

Search for: All records

Creators/Authors contains: "Freeman, Katherine H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An asteroid impact in the Yucatán Peninsula set off a sequence of events that led to the Cretaceous–Paleogene (K–Pg) mass extinction of 76% species, including the nonavian dinosaurs. The impact hit a carbonate platform and released sulfate aerosols and dust into Earth’s upper atmosphere, which cooled and darkened the planet—a scenario known as an impact winter. Organic burn markers are observed in K–Pg boundary records globally, but their source is debated. If some were derived from sedimentary carbon, and not solely wildfires, it implies soot from the target rock also contributed to the impact winter. Characteristics of polycyclic aromatic hydrocarbons (PAHs) in the Chicxulub crater sediments and at two deep ocean sites indicate a fossil carbon source that experienced rapid heating, consistent with organic matter ejected during the formation of the crater. Furthermore, PAH size distributions proximal and distal to the crater indicate the ejected carbon was dispersed globally by atmospheric processes. Molecular and charcoal evidence indicates wildfires were also present but more delayed and protracted and likely played a less acute role in biotic extinctions than previously suggested. Based on stratigraphy near the crater, between 7.5 × 1014and 2.5 × 1015g of black carbon was released from the target and ejected into the atmosphere, where it circulated the globe within a few hours. This carbon, together with sulfate aerosols and dust, initiated an impact winter and global darkening that curtailed photosynthesis and is widely considered to have caused the K–Pg mass extinction.

    more » « less
  2. That fire facilitated the late Miocene C4grassland expansion is widely suspected but poorly documented. Fire potentially tied global climate to this profound biosphere transition by serving as a regional-to-local driver of vegetation change. In modern environments, seasonal extremes in moisture amplify the occurrence of fire, disturbing forest ecosystems to create niche space for flammable grasses, which in turn provide fuel for frequent fires. On the Indian subcontinent, C4expansion was accompanied by increased seasonal extremes in rainfall (evidenced by δ18Ocarbonate), which set the stage for fuel accumulation and fire-linked clearance during wet-to-dry seasonal transitions. Here, we test the role of fire directly by examining the abundance and distribution patterns of fire-derived polycyclic aromatic hydrocarbons (PAHs) and terrestrial vegetation signatures inn-alkane carbon isotopes from paleosol samples of the Siwalik Group (Pakistan). Two million years before the C4grassland transition, fire-derived PAH concentrations increased as conifer vegetation declined, as indicated by a decrease in retene. This early increase in molecular fire signatures suggests a transition to more fire-prone vegetation such as a C3grassland and/or dry deciduous woodland. Between 8.0 and 6.0 million years ago, fire, precipitation seasonality, and C4-grass dominance increased simultaneously (within resolution) as marked by sharp increases in fire-derived PAHs, δ18Ocarbonate, and13C enrichment inn-alkanes diagnostic of C4grasses. The strong association of evidence for fire occurrence, vegetation change, and landscape opening indicates that a dynamic fire–grassland feedback system was both a necessary precondition and a driver for grassland ecology during the first emergence of C4grasslands.

    more » « less
  3. Abstract

    Fire dynamics potentially account for the asynchronous timing of the expansion of C4grasslands throughout the Mio‐Pliocene world. Yet how fire, climate, and ecosystems interacted in different settings remain poorly constrained because it is difficult to quantify fires and fuel source over these timescales. Here, we apply molecular proxies for fire occurrence alongside records of vegetation change and paleohydrology in Bengal Fan sediments (ODP Leg 116) to examine fire feedbacks on the south Asian continent. We employ abundances of polycyclic aromatic hydrocarbons (PAHs) to reconstruct fire occurrence and δ13C measurements of pyrogenic PAHs to constrain fuel source and grassland burning. This combination allowed us to test whether: (1) a fire‐seasonality forcing facilitated the expansion of grassland ecosystems and (2) a fire‐C4grass burning feedback maintained these systems. PAHs can be sourced from weathered fossil carbon (i.e., a petrogenic source) and from burned terrestrial biomass (i.e., a pyrogenic source). Alkylated and non‐alkylated structure abundance data distinguished pyrogenic from petrogenic sourced samples. A sharp increase in pyrogenic PAHs along with increases in δ2H and δ13C values of plant waxes at 7.4 Ma indicates increased fire coincided with the onset of C4expansion and hydrologic change in South Asia. The correlated13C enrichment in PAHs,13C enrichment in plant waxes, and increased abundances of PAHs suggest burning of C4grasslands likely maintained open ecosystems. Our results link fire to the initial opening of grassland ecosystems on a subcontinental‐scale and support disturbance as a critical mechanism of terrestrial biome transition.

    more » « less
  4. Abstract The Chicxulub crater was formed by an asteroid impact at ca. 66 Ma. The impact is considered to have contributed to the end-Cretaceous mass extinction and reduced productivity in the world’s oceans due to a transient cessation of photosynthesis. Here, biomarker profiles extracted from crater core material reveal exceptional insights into the post-impact upheaval and rapid recovery of microbial life. In the immediate hours to days after the impact, ocean resurge flooded the crater and a subsequent tsunami delivered debris from the surrounding carbonate ramp. Deposited material, including biomarkers diagnostic for land plants, cyanobacteria, and photosynthetic sulfur bacteria, appears to have been mobilized by wave energy from coastal microbial mats. As that energy subsided, days to months later, blooms of unicellular cyanobacteria were fueled by terrigenous nutrients. Approximately 200 k.y. later, the nutrient supply waned and the basin returned to oligotrophic conditions, as evident from N2-fixing cyanobacteria biomarkers. At 1 m.y. after impact, the abundance of photosynthetic sulfur bacteria supported the development of water-column photic zone euxinia within the crater. 
    more » « less
  5. Abstract

    The Paleocene‐Eocene Thermal Maximum (PETM; 56 Ma) is considered to be one of the best analogs for future climate change. The carbon isotope composition (δ13C) ofn‐alkanes derived from leaf waxes of terrestrial plants and marine algae can provide important insights into the carbon cycle perturbation during the PETM. Here, we present new organic geochemical data and compound‐specific δ13C data from sediments recovered from an early Cenozoic basin‐margin succession from Spitsbergen. These samples represent one of the most expanded PETM sites and provide new insights into the high Arctic response to the PETM. Our results reveal a synchronous ∼−6.5‰ carbon isotope excursion (CIE) in short‐chainn‐alkanes (nC19; marine algae/bacteria) with a ∼−5‰ CIE in long‐chainn‐alkanes (nC29andnC31; plant waxes) during the peak of the PETM. Although δ13Cn‐alkanesvalues were potentially affected via a modest thermal effect (1‰–2‰), the relative changes in the δ13Cn‐alkanesremain robust. A simple carbon cycle modeling suggests peak carbon emission rate could be ∼3 times faster than previously suggested using δ13CTOCrecords. The CIE magnitude of both δ13Cn‐C19and δ13Cn‐C29can be explained by the elevated influence of13C‐depleted respired CO2in the water column and increased water availability on land, elevatedpCO2in the atmosphere, and changes in vegetation type during the PETM. The synchronous decline in δ13C of both leaf waxes and marine algae/bacteria argues against a significant contribution to the sedimentary organic carbon pool from the weathering delivery of fossiln‐alkanes in the Arctic region.

    more » « less
  6. Abstract

    C4grasslands proliferated later in Australia than they did on other continents (∼3.5 Ma vs. 10–5 Ma). It remains unclear whether this delay reflects differences in climate conditions or ecological feedbacks, such as fire, that promote C4ecosystems. Here, we evaluated these factors using terrestrial biomarkers from marine sediments off western Australia. Fire‐derived polycyclic aromatic hydrocarbons (PAH) indicate fire ecology did not substantially change during or following C4expansion. The presence of fire‐adapted C3woody vegetation likely diminished the role of fire and delayed C4expansion until it was prompted by climate drying between 3.5 and 3.0 Ma. At the same time, mass accumulation rates of weathered PAHs increased 100‐fold, which indicates a significant loss of soil carbon accompanied this ecosystem shift. The tight couplings between hydroclimate and carbon storage altered boundary conditions for Australian ecosystems, and similar abrupt behavior may shape environmental responses to climate change.

    more » « less
  7. Abstract

    Modern tropical and subtropical C4grasslands and savannas were established during the late‐Miocene and Pliocene, over 20 Myr after evolutionary originations of the C4photosynthetic pathway. This lag suggests environmental factors first limited and then favored C4plants. Here, we examine the timing and drivers for the establishment of C4grasslands on the Indian Subcontinent using carbon and hydrogen isotope signatures of plant‐waxn‐alkanes recovered from turbidites in the Bengal Fan. Like prior studies, we find C4ecosystems in the Ganges‐Brahmaputra catchment first emerged at 7.4 Ma and subsequently expanded between 6.9 to ∼6.0 Ma. Hydrogen isotope values varied from 10.2 to 7.4 Ma and then increased after 7.4, which suggests intermittent drying began before the establishment of C4grasslands with further drying at the onset of C4expansion. Synthesis of published plant fossil data from the Siwalik Group of the Himalayan foreland basin documents an ecosystem trajectory from evergreen tropical forests to seasonally deciduous forests, and then expansive C4grasslands. This trajectory coincided with a seasonally uneven drying trend due to both increased evaporation of plant leaf and soil waters and reduced rainfall, as identified in soil carbonate and tooth enamel data sets. Collectively the fossil, biomarker, and isotopic evidence reveal the development of modern C4ecosystems on the Indian Subcontinent followed a series of ecosystem transformations driven by drying and fire feedbacks, and possibly declining atmospheric pCO2, beginning at 10.2 Ma and strengthening through the late Miocene.

    more » « less