skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Freilich, Daniel V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The point vortex is the simplest model of a two-dimensional vortex with non-zero circulation. The limitations introduced by its lack of core structure have been remedied by using desingularizations such as vortex patches and vortex sheets. We investigate steady states of the Sadovskii vortex in strain, a canonical model for a vortex in a general flow. The Sadovskii vortex is a uniform patch of vorticity surrounded by a vortex sheet. We recover previously known limiting cases of the vortex patch and hollow vortex, and examine the bifurcations away from these families. The result is a solution manifold spanned by two parameters. The addition of the vortex sheet to the vortex patch solutions immediately leads to splits in the solution manifold at certain bifurcation points. The more circular elliptical family remains attached to the family with a single pinch-off, and this family extends all the way to the simpler solution branch for the pure vortex sheet solutions. More elongated families below this one also split at bifurcation points, but these families do not exist in the vortex sheet limit. 
    more » « less
  2. null (Ed.)