Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT This study presents the results concerning six red giant stars members of the globular cluster NGC 6558. Our analysis utilized high-resolution near-infrared spectra obtained through the CAPOS initiative (the APOgee Survey of Clusters in the Galactic Bulge), which focuses on surveying clusters within the Galactic Bulge, as a component of the Apache Point Observatory Galactic Evolution Experiment II survey (APOGEE-2). We employ the Brussels Automatic Code for Characterizing High accUracy Spectra (BACCHUS) code to provide line-by-line elemental-abundances for Fe-peak (Fe, Ni), α-(O, Mg, Si, Ca, Ti), light-(C, N), odd-Z (Al), and the s-process element (Ce) for the four stars with high-signal-to-noise ratios. This is the first reliable measure of the CNO abundances for NGC 6558. Our analysis yields a mean metallicity for NGC 6558 of 〈[Fe/H]〉 = −1.15 ± 0.08, with no evidence for a metallicity spread. We find a Solar Ni abundance, 〈[Ni/Fe]〉 ∼ +0.01, and a moderate enhancement of α-elements, ranging between +0.16 and <+0.42, and a slight enhancement of the s-process element 〈[Ce/Fe]〉 ∼ +0.19. We also found low levels of 〈[Al/Fe]〉 ∼ +0.09, but with a strong enrichment of nitrogen, [N/Fe] > +0.99, along with a low level of carbon, [C/Fe] < −0.12. This behaviour of Nitrogen-Carbon is a typical chemical signature for the presence of multiple stellar populations in virtually all GCs; this is the first time that it is reported in NGC 6558. We also observed a remarkable consistency in the behaviour of all the chemical species compared to the other CAPOS bulge GCs of the same metallicity.more » « less
-
Context. The recent and exquisite astrometric, photometric, and radial velocity measurements of the Gaia mission resulted in a substantial advancement of the determination of the orbits for old star clusters, including the oldest Milky Way globular clusters (MW GCs). Aims. The main goal of the present paper is to use the new Gaia data release 3 (DR3) and the VISTA Variables in the Via Láctea Extended Survey (VVVX) measurements to obtain the orbits for nearly a dozen new MW GC candidates that have been poorly studied or previously unexplored. Methods. We use the Gaia DR3 and VVVX databases to identify bona fide MW GC candidates, namely VVV-CL160, Patchick 122, Patchick 125, Patchick 126, Kronberger 99, Kronberger 119, Kronberger 143, ESO 92-18, ESO 93-08, Gaia 2, and Ferrero 54. The relevant mean cluster physical parameters are derived (distances, Galactic coordinates, proper motions, radial velocities). We also measure accurate mean radial velocities for the GCs VVV-CL160 and Patchick 126 using observations acquired at the Gemini-South telescope with the Immersion GRating INfrared Spectrometer (IGRINS) high-resolution spectrograph. Orbits for each cluster are then computed using the GravPot16 model, assuming typical Galactic bar pattern speeds. Results. We reconstruct the orbits for these 11 star clusters for the first time. These include star clusters with retrograde and prograde orbital motions, both in the Galactic bulge and disk. We obtain orbital properties for this sample, such as the mean time-variations of perigalactic and apogalactic distances, eccentricities, vertical excursions from the Galactic plane, and Z -components of the angular momentum. Conclusions. Our main conclusion is that, based on the orbital parameters, Patchick 125 and Patchick 126 are genuine MW bulge or halo GCs; and Ferrero 54, Gaia 2, and Patchick 122 are MW disk GCs. In contrast, the orbits of Kronberger 99, Kronberger 119, Kronberger 143, ESO 92-18, and ESO 93-08 are more consistent with old MW disk open clusters, in agreement with previous results. VVV-CL160 falls very close to the Galactic centre, but reaches larger distances beyond the Solar orbit, and therefore its origin is still unclear.more » « less