skip to main content

Search for: All records

Creators/Authors contains: "Fricker, H. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present two narratives on the future of Antarctica and the Southern Ocean, from the perspective of an observer looking back from 2070. In the first scenario, greenhouse gas emissions remained unchecked, the climate continued to warm, and the policy response was ineffective; this had large ramifications in Antarctica and the Southern Ocean, with worldwide impacts. In the second scenario, ambitious action was taken to limit greenhouse gas emissions and to establish policies that reduced anthropogenic pressure on the environment, slowing the rate of change in Antarctica. Choices made in the next decade will determine what trajectory is realized. 
    more » « less
  2. Abstract

    Understanding ice sheet evolution through the geologic past can help constrain ice sheet models that predict future ice dynamics. Existing geological records of grounding line retreat in the Ross Sea, Antarctica, have been confined to ice‐free and terrestrial archives, which reflect dynamics from periods of more extensive ice cover. Therefore, our perspective of grounding line retreat since the Last Glacial Maximum remains incomplete. Sediments beneath Ross Ice Shelf and grounded ice offer complementary insight into the southernmost extent of grounding line retreat, yielding a more complete view of ice dynamics during deglaciation. Here we thermochemically separate the youngest organic carbon to estimate ages from sediments extracted near the Whillans Ice Stream grounding line to provide direct evidence for grounding line retreat in that region as recent as the mid‐Holocene (7.2 kyr B.P.). Our study demonstrates the utility of accurately dated, grounding‐line‐proximal sediment deposits for reconstructing past interactions between marine and subglacial environments.

    more » « less