Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Halliday, William David (Ed.)Among tremendous biodiversity within the California Current Ecosystem (CCE) are gigantic mysticetes (baleen whales) that produce structured sequences of sound described as song. From six years of passive acoustic monitoring within the central CCE we measured seasonal and interannual variations in the occurrence of blue (Balaenoptera musculus), fin (Balaenoptera physalus), and humpback (Megaptera novaeangliae) whale song. Song detection during 11 months of the year defines its prevalence in this foraging habitat and its potential use in behavioral ecology research. Large interannual changes in song occurrence within and between species motivates examination of causality. Humpback whales uniquely exhibited continuous interannual increases, rising from 34% to 76% of days over six years, and we examine multiple hypotheses to explain this exceptional trend. Potential influences of physical factors on detectability – including masking and acoustic propagation – were not supported by analysis of wind data or modeling of acoustic transmission loss. Potential influences of changes in local population abundance, site fidelity, or migration timing were supported for two of the interannual increases in song detection, based on extensive local photo ID data (17,356 IDs of 2,407 individuals). Potential influences of changes in foraging ecology and efficiency were supported across all years by analyses of the abundance and composition of forage species. Following detrimental food web impacts of a major marine heatwave that peaked during the first year of the study, foraging conditions consistently improved for humpback whales in the context of their exceptional prey-switching capacity. Stable isotope data from humpback and blue whale biopsy samples are consistent with observed interannual variations in the regional abundance and composition of forage species. This study thus indicates that major interannual changes in detection of baleen whale song may reflect underlying variations in forage species availability driven by energetic variations in ecosystem state.more » « lessFree, publicly-accessible full text available February 26, 2026
-
Abstract Background Advances in biologging technology allow researchers access to previously unobservable behavioral states and movement patterns of marine animals. To relate behaviors with environmental variables, features must be evaluated at scales relevant to the animal or behavior. Remotely sensed environmental data, collected via satellites, often suffers from the effects of cloud cover and lacks the spatial or temporal resolution to adequately link with individual animal behaviors or behavioral bouts. This study establishes a new method for remotely and continuously quantifying surface ice concentration (SIC) at a scale relevant to individual whales using on-animal tag video data. Results Motion-sensing and video-recording suction cup tags were deployed on 7 Antarctic minke whales ( Balaenoptera bonaerensis ) around the Antarctic Peninsula in February and March of 2018. To compare the scale of camera-tag observations with satellite imagery, the area of view was simulated using camera-tag parameters. For expected conditions, we found the visible area maximum to be ~ 100m 2 which indicates that observations occur at an equivalent or finer scale than a single pixel of high-resolution visible spectrum satellite imagery. SIC was classified into one of six bins (0%, 1–20%, 21–40%, 41–60%, 61–80%, 81–100%) by two independent observers for the initial and final surfacing between dives. In the event of a disagreement, a third independent observer was introduced, and the median of the three observer’s values was used. Initial results ( n = 6) show that Antarctic minke whales in the coastal bays of the Antarctic Peninsula spend 52% of their time in open water, and only 15% of their time in water with SIC greater than 20%. Over time, we find significant variation in observed SIC, indicating that Antarctic minke occupy an extremely dynamic environment. Sentinel-2 satellite-based approaches of sea ice assessment were not possible because of persistent cloud cover during the study period. Conclusion Tag-video offers a means to evaluate ice concentration at spatial and temporal scales relevant to the individual. Combined with information on underwater behavior, our ability to quantify SIC continuously at the scale of the animal will improve upon current remote sensing methods to understand the link between animal behavior and these dynamic environmental variables.more » « less
-
Abstract Bio-logging devices equipped with inertial measurement units—particularly accelerometers, magnetometers, and pressure sensors—have revolutionized our ability to study animals as necessary electronics have gotten smaller and more affordable over the last two decades. These animal-attached tags allow for fine scale determination of behavior in the absence of direct observation, particularly useful in the marine realm, where direct observation is often impossible, and recent devices can integrate more power hungry and sensitive instruments, such as hydrophones, cameras, and physiological sensors. To convert the raw voltages recorded by bio-logging sensors into biologically meaningful metrics of orientation (e.g., pitch, roll and heading), motion (e.g., speed, specific acceleration) and position (e.g., depth and spatial coordinates), we developed a series of MATLAB tools and online instructional tutorials. Our tools are adaptable for a variety of devices, though we focus specifically on the integration of video, audio, 3-axis accelerometers, 3-axis magnetometers, 3-axis gyroscopes, pressure, temperature, light and GPS data that are the standard outputs from Customized Animal Tracking Solutions (CATS) video tags. Our tools were developed and tested on cetacean data but are designed to be modular and adaptable for a variety of marine and terrestrial species. In this text, we describe how to use these tools, the theories and ideas behind their development, and ideas and additional tools for applying the outputs of the process to biological research. We additionally explore and address common errors that can occur during processing and discuss future applications. All code is provided open source and is designed to be useful to both novice and experienced programmers.more » « less
-
In this paper, we introduce a creative pipeline to incorporate physiological and behavioral data from contemporary marine mammal research into data-driven animations, leveraging functionality from industry tools and custom scripts to promote scientific insights, public awareness, and conservation outcomes. Our framework can flexibly transform data describing animals’ orientation, position, heart rate, and swimming stroke rate to control the position, rotation, and behavior of 3D models, to render animations, and to drive data sonification. Additionally, we explore the challenges of unifying disparate datasets gathered by an interdisciplinary team of researchers, and outline our design process for creating meaningful data visualization tools and animations. As part of our pipeline, we clean and process raw acceleration and electrophysiological signals to expedite complex multi-stream data analysis and the identification of critical foraging and escape behaviors. We provide details about four animation projects illustrating marine mammal datasets. These animations, commissioned by scientists to achieve outreach and conservation outcomes, have successfully increased the reach and engagement of the scientific projects they describe. These impactful visualizations help scientists identify behavioral responses to disturbance, increase public awareness of human-caused disturbance, and help build momentum for targeted conservation efforts backed by scientific evidence.more » « less
-
Machine learning algorithms are often used to model and predict animal habitat selection—the relationships between animal occurrences and habitat characteristics. For broadly distributed species, habitat selection often varies among populations and regions; thus, it would seem preferable to fit region- or population-specific models of habitat selection for more accurate inference and prediction, rather than fitting large-scale models using pooled data. However, where the aim is to make range-wide predictions, including areas for which there are no existing data or models of habitat selection, how can regional models best be combined? We propose that ensemble approaches commonly used to combine different algorithms for a single region can be reframed, treating regional habitat selection models as the candidate models. By doing so, we can incorporate regional variation when fitting predictive models of animal habitat selection across large ranges. We test this approach using satellite telemetry data from 168 humpback whales across five geographic regions in the Southern Ocean. Using random forests, we fitted a large-scale model relating humpback whale locations, versus background locations, to 10 environmental covariates, and made a circumpolar prediction of humpback whale habitat selection. We also fitted five regional models, the predictions of which we used as input features for four ensemble approaches: an unweighted ensemble, an ensemble weighted by environmental similarity in each cell, stacked generalization, and a hybrid approach wherein the environmental covariates and regional predictions were used as input features in a new model. We tested the predictive performance of these approaches on an independent validation dataset of humpback whale sightings and whaling catches. These multiregional ensemble approaches resulted in models with higher predictive performance than the circumpolar naive model. These approaches can be used to incorporate regional variation in animal habitat selection when fitting range-wide predictive models using machine learning algorithms. This can yield more accurate predictions across regions or populations of animals that may show variation in habitat selection.more » « less
An official website of the United States government
