- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000004010000
- More
- Availability
-
32
- Author / Contributor
- Filter by Author / Creator
-
-
Ayler, T (2)
-
Brigner, W. H. (2)
-
Forliti, T (2)
-
Friedman, J (2)
-
Garcia-Sanchez, F. (2)
-
Hassan, N. (2)
-
Hu, X. (2)
-
Incorvia, J. A. (2)
-
Marinella, M. J. (2)
-
Mariotti, M (2)
-
Nelson, C (2)
-
and Friedman, J. S. (2)
-
ANTON, GEORGE (1)
-
Barrick, K (1)
-
Bennet, C. H. (1)
-
Bennett, C. H. (1)
-
Cui, C. (1)
-
Friedman, J. S. (1)
-
MALATHU, JESSEN A. (1)
-
Maass, K L (1)
-
- Filter by Editor
-
-
null (3)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 8, 2026
-
Sharkey, T C; Martin, L; Ayler, T; Barrick, K; Forliti, T; Friedman, J; Maass, K L; Mariotti, M; Nelson, C; Tezcan, B (, Journal of Human Trafficking)Free, publicly-accessible full text available September 29, 2026
-
ANTON, GEORGE; MALATHU, JESSEN A.; STINSON, SHELBY; Friedman, J. S. (, Bulletin of the Australian Mathematical Society)null (Ed.)Abstract Cogdell et al. [‘Evaluating the Mahler measure of linear forms via Kronecker limit formulas on complex projective space’, Trans. Amer. Math. Soc. (2021), to appear] developed infinite series representations for the logarithmic Mahler measure of a complex linear form with four or more variables. We establish the case of three variables by bounding an integral with integrand involving the random walk probability density $$a\int _0^\infty tJ_0(at) \prod _{m=0}^2 J_0(r_m t)\,dt$$ , where $$J_0$$ is the order-zero Bessel function of the first kind and a and $$r_m$$ are positive real numbers. To facilitate our proof we develop an alternative description of the integral’s asymptotic behaviour at its known points of divergence. As a computational aid for numerical experiments, an algorithm to calculate these series is presented in the appendix.more » « less
-
Brigner, W. H.; Hassan, N.; Hu, X.; Bennett, C. H.; Garcia-Sanchez, F.; Cui, C.; Marinella, M. J.; Incorvia, J. A.; and Friedman, J. S. (, ArXivorg)null (Ed.)
-
Brigner, W. H.; Hassan, N.; Hu, X.; Bennet, C. H.; Garcia-Sanchez, F.; Marinella, M. J.; Incorvia, J. A.; and Friedman, J. S. (, ArXivorg)null (Ed.)
An official website of the United States government

Full Text Available