skip to main content

Search for: All records

Creators/Authors contains: "Friedman, Joseph S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2023
  2. We demonstrate using micromagnetic simulations that a nanomagnet array excited by surface acoustic waves (SAWs) can work as a reservoir. An input nanomagnet is excited with focused SAW and coupled to several nanomagnets, seven of which serve as output nanomagnets. To evaluate memory effect and computing capability, we study the short-term memory (STM) and parity check (PC) capacities, respectively. The SAW (4 GHz carrier frequency) amplitude is modulated to provide a sequence of sine and square waves of 100 MHz frequency. The responses of the selected output nanomagnets are processed by reading the envelope of their magnetization states, which is used to train the output weights using the regression method. For classification, a random sequence of 100 square and sine wave samples is used, of which 80% are used for training, and the rest are used for testing. We achieve 100% training and 100% testing accuracy. The average STM and PC are calculated to be ∼4.69 and ∼5.39 bits, respectively, which is indicative of the proposed acoustically driven nanomagnet oscillator array being well suited for physical reservoir computing applications. The energy dissipation is ∼2.5 times lower than a CMOS-based echo-state network. Furthermore, the reservoir is able to accurately predict Mackey-Glass time series upmore »to several time steps ahead. Finally, the ability to use high frequency SAW makes the nanomagnet reservoir scalable to small dimensions, and the ability to modulate the envelope at a lower frequency (100 MHz) adds flexibility to encode different signals beyond the sine/square waves classification and Mackey-Glass predication tasks demonstrated here.« less
    Free, publicly-accessible full text available September 5, 2023
  3. Neuromorphic computing is a promising candidate for beyond-von Neumann computer architectures, featuring low power consumption and high parallelism. Lateral inhibition and winner-take-all (WTA) features play a crucial role in neuronal competition of the nervous system as well as neuromorphic hardwares. The domain wall - magnetic tunnel junction (DWMTJ) neuron is an emerging spintronic artificial neuron device exhibiting intrinsic lateral inhibition. In this paper we show that lateral inhibition parameters modulate the neuron firing statistics in a DW-MTJ neuron array, thus emulating soft-winner-take-all (WTA) and firing group selection.
    Free, publicly-accessible full text available May 28, 2023
  4. Free, publicly-accessible full text available May 1, 2023
  5. Magnetic skyrmions are nanoscale whirls of magnetism that can be propagated with electrical currents. The repulsion between skyrmions inspires their use for reversible computing based on the elastic billiard ball collisions proposed for conservative logic in 1982. Here we evaluate the logical and physical reversibility of this skyrmion logic paradigm, as well as the limitations that must be addressed before dissipation-free computation can be realized.
  6. Prevention of integrated circuit counterfeiting through logic locking faces the fundamental challenge of securing an obfuscation key against both physical and algorithmic threats. Previous work has focused on strengthening the logic encryption to protect the key against algorithmic attacks, but failed to provide adequate physical security. In this work, we propose a logic locking scheme that leverages the non-volatility of the nanomagnet logic (NML) family to achieve both physical and algorithmic security. Polymorphic NML minority gates protect the obfuscation key against algorithmic attacks, while a strain-inducing shield surrounding the nanomagnets provides physical security via a self-destruction mechanism.
  7. The domain wall-magnetic tunnel junction (DW-MTJ) is a spintronic device that enables efficient logic circuit design because of its low energy consumption, small size, and non-volatility. Furthermore, the DW-MTJ is one of the few spintronic devices for which a direct cascading mechanism is experimentally demonstrated without any extra buffers; this enables potential design and fabrication of a large-scale DW-MTJ logic system. However, DW-MTJ logic relies on the conversion between electrical signals and magnetic states which is sensitive to process imperfection. Therefore, it is important to analyze the robustness of such DW-MTJ devices to anticipate the system reliability before fabrication. Here we propose a new DW-MTJ model that integrates the impacts of process variation to enable the analysis and optimization of DW-MTJ logic. This will allow circuit and device design that enhances the robustness of DW-MTJ logic and advances the development of energy-efficient spintronic computing systems.
  8. Drouhin, Henri-Jean M. ; Wegrowe, Jean-Eric ; Razeghi, Manijeh (Ed.)
    Neuromorphic computing captures the quintessential neural behaviors of the brain and is a promising candidate for the beyond-von Neumann computer architectures, featuring low power consumption and high parallelism. The neuronal lateral inhibition feature, closely associated with the biological receptive eld, is crucial to neuronal competition in the nervous system as well as its neuromorphic hardware counterpart. The domain wall - magnetic tunnel junction (DW-MTJ) neuron is an emerging spintronic arti cial neuron device exhibiting intrinsic lateral inhibition. This work discusses lateral inhibition mechanism of the DW-MTJ neuron and shows by micromagnetic simulation that lateral inhibition is eciently enhanced by the Dzyaloshinskii-Moriya interaction (DMI).