- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Friedman, Marc (2)
-
Ali, Abdul-Mehdi S (1)
-
Alizadeh, Mohammad (1)
-
Blake, Johanna M (1)
-
Bonito, Gregory (1)
-
Brearley, Adrian J (1)
-
Cerrato, Jose M (1)
-
Faria, Lúrima_Uane Soares (1)
-
Fisher, Katelin (1)
-
Interlandi, Matteo (1)
-
Jemison, Noah (1)
-
Jindal, Alekh (1)
-
Kraska, Tim (1)
-
Marcus, Ryan (1)
-
Moreira, Geisianny (1)
-
Negi, Parimarjan (1)
-
Peterson, Eric J (1)
-
Rivadávia, Raphael (1)
-
Rodrigues, Débora F (1)
-
Saenz-Trevizo, Angelica (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We assessed the effect of redox conditions on the mobility of lead (Pb), copper (Cu), and iron (Fe) from sediments affected by acid mine drainage (AMD). This was accomplished by integrating laboratory microcosm experiments, aqueous chemistry, diffraction, and electron microscopy. Microcosm experiments underwent 3 consecutive 5 day redox phases: oxic-anoxicoxic. The sediments contained Fe (51,000 mg/kg), Pb (307 mg/kg), and Cu (30 mg/kg), and minerals such as Illite, albite, and goethite. Microscopy analyses revealed that Pb and Cu are associated with Al-silicates and jarosite. Iron release peaked under anoxic conditions (∼250 mg/L), then decreased in the second oxic phase (<70 mg/L). Extraction experiments confirmed that Pb and Cu are water-labile at pH 3.4 (Pb: 27 μg/L exceeding the United States Environmental Protection Agency drinking water action level of 15 μg/L, Cu: 75 μg/L), but less labile at pH 6.4 (Pb: 7 μg/L, Cu: 3 μg/L). DNA sequencing detected metal-tolerant fungal genera (Trichoderma, Fusarium, Penicillium, and Aspergillus) in the sediments. This study provides insights into the biogeochemical processes influencing the lability of metals in AMD-affected sites, which have relevant implications for risk assessment, remediation strategies, and recovery of critical minerals.more » « lessFree, publicly-accessible full text available December 12, 2026
-
Negi, Parimarjan; Interlandi, Matteo; Marcus, Ryan; Alizadeh, Mohammad; Kraska, Tim; Friedman, Marc; Jindal, Alekh (, SIGMOD '21: Proceedings of the 2021 International Conference on Management of Data)
An official website of the United States government
