skip to main content


Search for: All records

Creators/Authors contains: "Fu, Bo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. S. Kim, B. Feng (Ed.)
    The thermal comfort of individuals is considered an important factor that affects the health, well-being, and productivity of the occupants. However, only a small proportion of people are satisfied with the thermal environment of their current workplace. Therefore, this paper proposes a novel framework to simulate and optimize thermal comfort by controlling room conditions and matching them with occupants. The method is developed based on personalized thermal comfort prediction models and the Large Neighborhood Search (LNS) algorithm. To illustrate and validate the algorithm, a case study is provided. The results compare the thermal comfort of the occupants before and after the optimization and show a significant improvement in the thermal comfort. The proposed simulation method is proven to be feasible and efficient in providing an optimal match of occupants and rooms with specific settings, and therefore, can be of great value for the decision-making of the building management. 
    more » « less
  2. Summary

    A salient feature of data from clinical trials and medical studies is inhomogeneity. Patients not only differ in baseline characteristics, but also in the way that they respond to treatment. Optimal individualized treatment regimes are developed to select effective treatments based on patient's heterogeneity. However, the optimal treatment regime might also vary for patients across different subgroups. We mainly consider patients’ heterogeneity caused by groupwise individualized treatment effects assuming the same marginal treatment effects for all groups. We propose a new maximin projection learning method for estimating a single treatment decision rule that works reliably for a group of future patients from a possibly new subpopulation. Based on estimated optimal treatment regimes for all subgroups, the proposed maximin treatment regime is obtained by solving a quadratically constrained linear programming problem, which can be efficiently computed by interior point methods. Consistency and asymptotic normality of the estimator are established. Numerical examples show the reliability of the methodology proposed.

     
    more » « less