- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Fu, Yanjun (2)
-
Alomair, Basel (1)
-
Chen, Xinyun (1)
-
Chen, Yizheng (1)
-
Ding, Yangruibo (1)
-
Dutta, Sanghamitra (1)
-
Hamman, Faisal (1)
-
Ibrahim, Omniyyah (1)
-
Ray, Baishakhi (1)
-
Sitawarin, Chawin (1)
-
Wagner, David (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Instruction tuning is essential for Large Language Models (LLMs) to effectively follow user instructions. To improve training efficiency and reduce data redundancy, recent works use LLM-based scoring functions, e.g., Instruction-Following Difficulty (IFD), to select high–quality instruction-tuning data with scores above a threshold. While these data selection methods often lead to models that can match or even exceed the performance of models trained on the full datasets, we identify two key limitations: (i) they assess quality at the sample level, ignoring token-level informativeness; and (ii) they overlook the robustness of the scoring method, often selecting a sample due to superficial lexical features instead of its true quality. In this work, we propose Token-Selective HIeRarchical Data Selection for Instruction Tuning (T-SHIRT), a novel data selection framework that introduces a new scoring method to include only informative tokens in quality evaluation and also promote robust and reliable samples whose neighbors also show high quality with less local inconsistencies. We demonstrate that models instruction-tuned on a curated dataset (only 5% of the original size) using T-SHIRT can outperform those trained on the entire large-scale dataset by up to 5.48 points on average across eight benchmarks. Across various LLMs and training set scales, our method consistently surpasses existing state-of-the-art data selection techniques, while also remaining both cost-effective and highly efficient. For instance, by using GPT-2 for score computation, we are able to process a dataset of 52k samples in 40 minutes on a single GPU. Our code is available at https://github.com/Dynamite321/T-SHIRT.more » « lessFree, publicly-accessible full text available December 9, 2026
-
Ding, Yangruibo; Fu, Yanjun; Ibrahim, Omniyyah; Sitawarin, Chawin; Chen, Xinyun; Alomair, Basel; Wagner, David; Ray, Baishakhi; Chen, Yizheng (, 47th International Conference on Software Engineering)In the context of the rising interest in code language models (code LMs) and vulnerability detection, we study the effectiveness of code LMs for detecting vulnerabilities. Our analysis reveals significant shortcomings in existing vulnerability datasets, including poor data quality, low label accuracy, and high duplication rates, leading to unreliable model performance in realistic vulnerability detection scenarios. Additionally, the evaluation methods used with these datasets are not representative of real-world vulnerability detection. To address these challenges, we introduce PRIMEVUL, a new dataset for training and evaluating code LMs for vulnerability detection. PRIMEVUL incorporates a novel set of data labeling techniques that achieve comparable label accuracy to humanverified benchmarks while significantly expanding the dataset. It also implements a rigorous data de-duplication and chronological data splitting strategy to mitigate data leakage issues, alongside introducing more realistic evaluation metrics and settings. This comprehensive approach aims to provide a more accurate assessment of code LMs’ performance in real-world conditions. Evaluating code LMs on PRIMEVUL reveals that existing benchmarks significantly overestimate the performance of these models. For instance, a state-of-the-art 7B model scored 68.26% F1 on BigVul but only 3.09% F1 on PRIMEVUL. Attempts to improve performance through advanced training techniques and larger models like GPT-3.5 and GPT-4 were unsuccessful, with results akin to random guessing in the most stringent settings. These findings underscore the considerable gap between current capabilities and the practical requirements for deploying code LMs in security roles, highlighting the need for more innovative research in this domain.more » « lessFree, publicly-accessible full text available April 27, 2026
An official website of the United States government
