Radiative cooling of the lowest atmospheric levels is of strong importance for modulating atmospheric circulations and organizing convection, but detailed observations and a robust theoretical understanding are lacking. Here we use unprecedented observational constraints from subsidence regimes in the tropical Atlantic to develop a theory for the shape and magnitude of low‐level longwave radiative cooling in clear‐sky, showing peaks larger than 5–10 K/day at the top of the boundary layer. A suite of novel scaling approximations is first developed from simplified spectral theory, in close agreement with the measurements. The radiative cooling peak height is set by the maximum lapse rate in water vapor path, and its magnitude is mainly controlled by the ratio of column relative humidity above and below the peak. We emphasize how elevated intrusions of moist air can reduce low‐level cooling, by sporadically shading the spectral range which effectively cools to space. The efficiency of this spectral shading depends both on water content and altitude of moist intrusions; its height dependence cannot be explained by the temperature difference between the emitting and absorbing layers, but by the decrease of water vapor extinction with altitude. This analytical work can help to narrow the search for low‐level cloud patterns sensitive to radiative‐convective feedbacks: the most organized patterns with largest cloud fractions occur in atmospheres below 10% relative humidity and feel the strongest low‐level cooling. This motivates further assessment of favorable conditions for radiative‐convective feedbacks and a robust quantification of corresponding shallow cloud dynamics in current and warmer climates.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract During El Niño events, a strong tropics-wide warming of the free troposphere is observed (of order 1 K at 300 hPa). This warming plays an important role for the teleconnection processes associated with El Niño but it remains unclear what initiates this warming. Since convective quasi-equilibrium only holds in regions of deep convection, the strong free-tropospheric warming implies that the warmest surface waters (where atmospheric deep convection occurs) must warm during El Niño. We analyze the evolution of the oceanic mixed layer heat budget over El Niño events as function of sea surface temperature (SST). Data from the ERA5 and an unforced simulation of a coupled climate model both confirm that SSTs during an El Niño event increase at the high end of the SST distribution. The data show that this is due to an anomalous heat flux from the atmosphere into the ocean caused by a decrease in evaporation due anomalously weak low-level winds (i.e., relative to the wind speed observed in the domain of deep convection in the climatological base state). It is hypothesized that the more zonally symmetric circulation during El Niño is responsible for the weakening of low-level winds. The result of a substantial heat flux into the ocean in the domain of atmospheric deep convection (the opposite of the canonical heat flux out of the ocean into the atmosphere observed in the cold eastern Pacific) caused by a decrease in low-level wind speed implies that the prominent tropospheric warming results from mechanical forcing.
-
Abstract General Circulation Model (GCM) simulations with prescribed observed sea surface temperature (SST) over the historical period show systematic global shortwave cloud radiative effect (SWCRE) variations uncorrelated with global surface temperature (known as “pattern effect”). Here, we show that a single parameter that quantifies the difference in SSTs between regions of tropical deep convection and the tropical or global average (Δconv) captures the time‐varying “pattern effect” in the simulations using the PCMDI/AMIPII SST recommended for CMIP6. In particular, a large positive trend in the 1980s–1990s in Δconvexplains the change of sign to a strongly negative SWCRE feedback since the late 1970s. In these decades, the regions of deep convection warm about +50% more than the tropical average. Such an amplification is rarely observed in forced coupled atmosphere‐ocean GCM simulations, where the amplified warming is typically about +10%. During the post 2000 global warming hiatus Δconvshows little change, and the more recent period of resumed global warming is too short to robustly detect trends. In the prescribed SST simulations, Δconvis forced by the SST difference between warmer and colder regions. An index thereof (SST
# ) evaluated for six SST reconstructions shows similar trends for the satellite era, but the difference between the pre‐ and the satellite era is substantially larger in the PCMDI/AMIPII SSTs than in the other reconstructions. Quantification of the cloud feedback depends critically on small changes in the shape of the SST probability density distribution. These sensitivities underscore how essential highly accurate, persistent, and stable global climate records are to determine the cloud feedback. -
Abstract Tropical average shortwave cloud radiative effect (SWCRE) anomalies observed by CERES/EBAF v4 are explained by observed average sea surface temperature (
) and the difference between the warmest 30% where deep convection occurs and ). Observed tropospheric temperatures show variations in boundary layer capping strength over time consistent with the evolution of SST # . The CERES/EBAF v4 data confirm that associated cloud fraction changes over the colder waters dominate SWCRE. This observational evidence for the “pattern effect” noted in General Circulation Model simulations suggests that SST# captures much of this effect. The observed sensitivities (dSWCRE/dW·m−2·K−1, dSWCRE/dSST # ≈−4.8W·m−2·K−1) largely reflect El Niño–Southern Oscillation. As El Niño develops,increases and SST # decreases (both increasing SWCRE). Only after the El Niño peak, SST# increases and SWCRE decreases. SST# is also relevant for the tropical temperature trend profile controversy and the discrepancy between observed and modeled equatorial Pacific SST trends. Causality and implications for future climates are discussed.