skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fujimoto, Daisuke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Post-quantum cryptography (PQC) has drawn significant attention from the hardware design research community, especially on field-programmable gate array (FPGA) platforms. In line with this trend, in this paper, we present a novel FPGA-based PQC design work (CHIRP), i.e.,Compact and high-Performance FPGA implementation of unIfied accelerators forRing-Binary-Learning-with-Errors (RBLWE)-basedPQC, a promising lightweight PQC suited for related applications like Internet-of-Things. The proposed accelerators offer flexibility across the available two security levels, thus expanding their application potential. In total, we presented four distinct hardware accelerators tailored to different performance and resource requirements, ranging from resource-constrained devices to high-throughput applications. Our innovation encompasses three key efforts: (i) we derived four optimized algorithms for RBLWE-ENC’s unified operation (covering the available two security levels), allowing flexible switching of security sizes while boosting calculations; (ii) we then presented the four novel accelerators (CHIRP) targeting FPGA platforms, featuring dedicated hardware structures; (iii) we finally conducted a comprehensive evaluation to validate the efficiency of the proposed accelerators on various FPGA devices. Compared to the existing unified design, the proposed accelerator demonstrated up to 91.4% reduction in area-delay product (ADP) on the Straix-V device. Even when compared with the state-of-the-art single security designs, the proposed accelerator (best version) obtains much better resource usage and ADP performance while unified operation (flexibly switching between two security levels) is considered on both AMD-Xilinx and Intel devices. We anticipate the findings of this research will foster advancements in FPGA implementation techniques for lightweight PQC development. 
    more » « less
    Free, publicly-accessible full text available January 28, 2026