skip to main content

Search for: All records

Creators/Authors contains: "Furlanetto, Steven R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    The formation of the first stars marks a watershed moment in the history of our Universe. As the first luminous structures, these stars (also known as Population III, or Pop III stars) seed the first galaxies and begin the process of reionization. We construct an analytic model to self-consistently trace the formation of Pop III stars inside minihaloes in the presence of the fluctuating ultraviolet background, relic dark matter (DM)-baryon relative velocities from the early universe, and an X-ray background, which largely work to suppress cooling of gas and delay the formation of this first generation of stars. We demonstrate the utility of this framework in a semi-analytic model for early star formation that also follows the transition between Pop III and Pop II star formation inside these haloes. Using our new prescription for the criteria allowing Pop III star formation, we follow a population of DM haloes from z = 50 through z = 6 and examine the global star formation history, finding that each process defines its own key epoch: (i) the stream velocity dominates at the highest redshifts (z ≳ 30), (ii) the UV background sets the tone at intermediate times (30 ≳ z ≳ 15), and (iii) X-rays control the end of Pop III star formation at the latest times (z ≲ 15). In all of our models, Pop III stars continue to form down to z ∼ 7–10, when their supernovae will be potentially observable with forthcoming instruments. Finally, we identify the signatures of variations in the Pop III physics in the global 21-cm spin–flip signal of atomic hydrogen.

    more » « less

    Lyman α emitters (LAEs) are excellent probes of the reionization process, as they must be surrounded by large ionized bubbles in order to be visible during the reionization era. Large ionized regions are thought to correspond to overdense regions and may be protoclusters, making them interesting test-beds for early massive structures. Close associations containing several LAEs are often assumed to mark overdense, ionized bubbles. Here, we develop the first framework to quantify the ionization and density fields of high-z galaxy associations. We explore the interplay between (i) the large-scale density of a survey field, (ii) Poisson noise due to the small number density of bright sources at high redshifts (z ∼ 7), and (iii) the effects of the ionized fraction on the observation of LAEs. We use Bayesian statistics, a simple model of reionization, and a Monte Carlo simulation to construct a more comprehensive method for calculating the large-scale density of LAE regions than previous works. We find that Poisson noise has a strong effect on the inferred density of a region and show how the ionized fraction can be inferred. We then apply our framework to the strongest association yet identified: Hu et al. found 14 LAEs in a volume of ∼50 000 cMpc3 inside the COSMOS field at z ∼ 7. We show that this is most likely a 2.4σ overdensity inside of an ionized or nearly ionized bubble. We also show that this LAE association implies that the global ionized fraction is $\bar{Q} = 0.59^{+0.10}_{-0.11}$, within the context of a simple reionization model.

    more » « less

    Over the last three decades, photometric galaxy selection using the Lyman-break technique has transformed our understanding of the high-z Universe, providing large samples of galaxies at $3 \lesssim z \lesssim 8$ with relatively small contamination. With the advent of the JWST, the Lyman-break technique has now been extended to z ∼ 17. However, the purity of the resulting samples has not been tested. Here, we use a simple model, built on the robust foundation of the dark matter halo mass function, to show that the expected level of contamination rises dramatically at $z \gtrsim 10$, especially for luminous galaxies, placing stringent requirements on the selection process. The most luminous sources at $z \gtrsim 12$ are likely at least 10 000 times rarer than potential contaminants, so extensive spectroscopic follow-up campaigns may be required to identify a small number of target sources.

    more » « less
  4. Abstract

    Observed scatter in the Lyαopacity of quasar sightlines atz< 6 has motivated measurements of the correlation between Lyαopacity and galaxy density, as models that predict this scatter make strong and sometimes opposite predictions for how they should be related. Our previous work associated two highly opaque Lyαtroughs atz∼ 5.7 with a deficit of Lyαemitting galaxies (LAEs). In this work, we survey two of the most highly transmissive lines of sight at this redshift toward thez= 6.02 quasar SDSS J1306+0356 and thez= 6.17 quasar PSO J359-06. We find that both fields are underdense in LAEs within 10h−1Mpc of the quasar sightline, somewhat less extensive than underdensities associated with Lyαtroughs. We combine our observations with three additional fields from the literature and find that while fields with extreme opacities are generally underdense, moderate opacities span a wider density range. The results at high opacities are consistent with models that invoke UV background fluctuations and/or late reionization to explain the observed scatter in intergalactic medium (IGM) Lyαopacities. There is tension at low opacities, however, as the models tend to associate lower IGM Lyαopacities with higher densities. Although the number of fields surveyed is still small, the low-opacity results may support a scenario in which the ionizing background in low-density regions increases more rapidly than some models suggest after becoming ionized. Elevated gas temperatures from recent reionization may also be making these regions more transparent.

    more » « less

    One of the key processes driving galaxy evolution during the Cosmic Dawn is supernova feedback. This likely helps regulate star formation inside of galaxies, but it can also drive winds that influence the large-scale intergalactic medium. Here, we present a simple semi-analytic model of supernova-driven galactic winds and explore the contributions of different phases of galaxy evolution to cosmic metal enrichment in the high-redshift (z ≳ 6) Universe. We show that models calibrated to the observed galaxy luminosity function at z ∼ 6–8 have filling factors $\sim 1{{\%}}$ at z ∼ 6 and $\sim 0.1{{\%}}$ at z ∼ 12, with different star formation prescriptions providing about an order of magnitude uncertainty. Despite the small fraction of space filled by winds, these scenarios predict an upper limit to the abundance of metal-line absorbers in quasar spectra at $z \gtrsim 5$ which is comfortably above that currently observed. We also consider enrichment through winds driven by Pop III star formation in minihalos. We find that these can dominate the total filling factor at $z \gtrsim 10$ and even compete with winds from normal galaxies at z ∼ 6, at least in terms of the total enriched volume. But these regions have much lower overall metallicities, because each one is generated by a small burst of star formation. Finally, we show that Compton cooling of these supernova-driven winds at $z \gtrsim 6$ has only a small effect on the cosmic microwave background.

    more » « less

    One of the most exciting advances of the current generation of telescopes has been the detection of galaxies during the epoch of reionization, using deep fields that have pushed these instruments to their limits. It is essential to optimize our analyses of these fields in order to extract as much information as possible from them. In particular, standard methods of measuring the galaxy luminosity function discard information on large-scale dark matter density fluctuations, even though this large-scale structure drives galaxy formation and reionization during the Cosmic Dawn. Measuring these densities would provide a bedrock observable, connecting galaxy surveys to theoretical models of the reionization process and structure formation. Here, we use existing Hubble deep field data to simultaneously fit the universal luminosity function and measure large-scale densities for each Hubble deep field at z = 6–8 by directly incorporating priors on the large-scale density field and galaxy bias. Our fit of the universal luminosity function is consistent with previous methods but differs in the details. For the first time, we measure the underlying densities of the survey fields, including the most over/underdense Hubble fields. We show that the distribution of densities is consistent with current predictions for cosmic variance. This analysis on just 17 fields is a small sample of what will be possible with the James Webb Space Telescope, which will measure hundreds of fields at comparable (or better) depths and at higher redshifts.

    more » « less

    Efficient and accurate simulations of the reionization epoch are crucial to exploring the vast uncharted parameter space that will soon be constrained by measurements of the 21-cm power spectrum. One of these parameters, Rmax, is meant to characterize the absorption of photons by residual neutral gas inside of ionized regions, but has historically been implemented in a very simplistic fashion acting only as a maximum distance that ionizing photons can travel. We leverage the correspondence between excursion set methods and the integrated flux from ionizing sources to define two physically motivated prescriptions of the mean free path (MFP) of ionizing photons that smoothly attenuate the contribution from distant sources. Implementation of these methods in seminumerical reionization codes requires only modest additional computational effort due to the fact that spatial filtering is still performed on scales larger than the characteristic absorption distance. We find that our smoothly defined MFP prescriptions more effectively suppress large-scale structures in the ionization field in seminumerical reionization simulations compared to the standard Rmax approach, and the magnitude of the MFP modulates the power spectrum in a much smoother manner. We show that this suppression of large-scale power is significant enough to be relevant for upcoming 21-cm power spectrum observations. Finally, we show that in our model, the MFP plays a larger role in regulating the reionization history than in models using Rmax.

    more » « less

    In recent years, several analytic models have demonstrated that simple assumptions about halo growth and feedback-regulated star formation can match the (limited) existing observational data on galaxies at $z \gtrsim6$. By extending such models, we demonstrate that imposing a time delay on stellar feedback (as inevitably occurs in the case of supernova explosions) induces burstiness in small galaxies. Although supernova progenitors have short lifetimes (∼5–30 Myr), the delay exceeds the dynamical time of galaxies at such high redshifts. As a result, star formation proceeds unimpeded by feedback for several cycles and ‘overshoots’ the expectations of feedback-regulated star formation models. We show that such overshoot is expected even in atomic cooling haloes, with halo masses up to ∼1010.5 M⊙ at z ≳ 6. However, these burst cycles damp out quickly in massive galaxies, because large haloes are more resistant to feedback so retain a continuous gas supply. Bursts in small galaxies – largely beyond the reach of existing observations – induce a scatter in the luminosity of these haloes (of ∼1 mag) and increase the time-averaged star formation efficiency by up to an order of magnitude. This kind of burstiness can have substantial effects on the earliest phases of star formation and reionization.

    more » « less

    Upper limits from the current generation of interferometers targeting the 21-cm signal from high redshifts have recently begun to rule out physically realistic, though still extreme, models of the Epoch of Reionization (EoR). While inferring the detailed properties of the first galaxies is one of the most important motivations for measuring the high-z 21-cm signal, they can also provide useful constraints on the properties of the intergalactic medium (IGM). Motivated by this, we build a simple, phenomenological model for the 21-cm power spectrum that works directly in terms of IGM properties, which bypasses the computationally expensive 3D semi-numerical modeling generally employed in inference pipelines and avoids explicit assumptions about galaxy properties. The key simplifying assumptions are that (i) the ionization field is binary, and composed of spherical bubbles with an abundance described well by a parametric bubble size distribution, and (ii) that the spin temperature of the ‘bulk’ IGM outside bubbles is uniform. Despite the simplicity of the model, the mean ionized fraction and spin temperature of the IGM recovered from mock 21-cm power spectra generated with 21cm fast are generally in good agreement with the true input values. This suggests that it is possible to obtain comparable constraints on the IGM using models with very different assumptions, parameters, and priors. Our approach will thus be complementary to semi-numerical models as upper limits continue to improve in the coming years.

    more » « less

    Cosmic variance from large-scale structure will be a major source of uncertainty for galaxy surveys at $z \gtrsim 6$, but that same structure will also provide an opportunity to identify and study dense environments in the early Universe. Using a robust model for galaxy clustering, we directly incorporate large-scale densities into an inference framework that simultaneously measures the high-z ($z \gtrsim 6$) UV luminosity function and the average matter density of each distinct volume in a survey. Through this framework, we forecast the performance of several major upcoming James Webb Space Telescope (JWST) galaxy surveys. We find that they can constrain field matter densities down to the theoretical limit imposed by Poisson noise and unambiguously identify over-dense (and under-dense) regions on transverse scales of tens of comoving Mpc. We also predict JWST will measure the luminosity function with a precision at z = 12 comparable to existing Hubble Space Telescope’s constraints at z = 8 (and even better for the faint-end slope). We also find that wide-field surveys are especially important in distinguishing luminosity function models.

    more » « less