Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Archaeal group II chaperonins, also known as heat shock proteins (HSPs), are abundantly expressed in Sulfolobales. HSPα and HSPβ gene expression is upregulated during thermal shock. HSPs form large 18-mer complexes that assist in folding nascent proteins and protecting resident proteins during thermal stress. Engineered HSPs have been designed for industrial applications. Since temperature flux in the geothermal habitats of Sulfolobales impacts intracellular temperature, it follows that HSPs have developed thermotolerance. However, despite the low pH (i.e., pH < 4) typical for these habitats, intracellular pH in Sulfolobales is maintained at ~6.5. Therefore, it is not presumed that HSPs have evolved acid-tolerance. To test tolerance to low pH, HSPs were studied at various pH and temperature values. Both circular dichroism and intrinsic fluorescence indicate that HSPα and HSPβ retain structural integrity at neutral pH over a wide range of temperatures. Structural integrity is compromised for all HSPs at ultra-low pH (e.g., pH 2). Secondary structures in HSPs are resilient under mildly acidic conditions (pH 4) but Anilino naphthalene 8-sulfonate binding shows shifts in tertiary structure at lower pH. Trypsin digestion shows that the HSPβ-coh backbone is the most flexible and HSPβ is the most resilient. Overall, results suggest that HSPα and HSPβ exhibit greater thermostability than HSPβ-coh and that there are limits to HSP acid-tolerance. Molecular dynamics (MD) simulations complement the wet lab data. Specifically, MD suggests that the HSPβ secondary structure is the most stable. Also, despite similarities in pH- and temperature-dependent behavior, there are clear differences in how each HSP subtype is perturbed.more » « less
-
Within the family Herpesviridae , sub-family β-herpesvirinae , and genus Roseolovirus , there are only three human herpesviruses that have been described: HHV-6A, HHV-6B, and HHV-7. Initially, HHV-6A and HHV-6B were considered as two variants of the same virus (i.e., HHV6). Despite high overall genetic sequence identity (~90%), HHV-6A and HHV-6B are now recognized as two distinct viruses. Sequence divergence (e.g., >30%) in key coding regions and significant differences in physiological and biochemical profiles (e.g., use of different receptors for viral entry) underscore the conclusion that HHV-6A and HHV-6B are distinct viruses of the β-herpesvirinae . Despite these viruses being implicated as causative agents in several nervous system disorders (e.g., multiple sclerosis, epilepsy, and chronic fatigue syndrome), the mechanisms of action and relative contributions of each virus to neurological dysfunction are unclear. Unresolved questions regarding differences in cell tropism, receptor use and binding affinity (i.e., CD46 versus CD134), host neuro-immunological responses, and relative virulence between HHV-6A versus HHV-6B prevent a complete characterization. Although it has been shown that both HHV-6A and HHV-6B can infect glia (and, recently, cerebellar Purkinje cells), cell tropism of HHV-6A versus HHV-6B for different nerve cell types remains vague. In this study, we show that both viruses can infect different nerve cell types (i.e., glia versus neurons) and different neurotransmitter phenotypes derived from differentiated human neural stem cells. As demonstrated by immunofluorescence, HHV-6A and HHV-6B productively infect VGluT1-containing cells (i.e., glutamatergic neurons) and dopamine-containing cells (i.e., dopaminergic neurons). However, neither virus appears to infect GAD67-containing cells (i.e., GABAergic neurons). As determined by qPCR, expression of immunological factors (e.g., cytokines) in cells infected with HHV-6A versus HHV6-B also differs. These data along with morphometric and image analyses of infected differentiated neural stem cell cultures indicate that while HHV-6B may have greater opportunity for transmission, HHV-6A induces more severe cytopathic effects (e.g., syncytia) at the same post-infection end points. Cumulatively, results suggest that HHV-6A is more virulent than HHV-6B in susceptible cells, while neither virus productively infects GABAergic cells. Consistency between these in vitro data and in vivo experiments would provide new insights into potential mechanisms for HHV6-induced epileptogenesis.more » « less
An official website of the United States government
