skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Furukawa, Yuji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a 23Na nuclear spin dynamics model for interpreting nuclear magnetic resonance (NMR) spin-lattice relaxation and central linewidth data in the invert glass system Na4P2S7-xOx, 0 ≤ x ≤ 7. The glassy nature of this material results in variations in local Na+ cation environments that may be described by a Gaussian distribution of activation energies. A consistent difference between the mean activation energies determined by NMR and DC conductivity measurements was observed, and interpreted using a percolation theory model. From this, the Nasingle bondNa coordination number in the sodium cation sublattice was obtained. These values were consistent with jumps through tetrahedral faces of the sodium cages for the sulfur rich glasses, x < 5, consistent with proposed models of their short range order (SRO) structures. From NMR spin-echo measurements, we determined the Nasingle bondNa second moment M2 resulting from the Nasingle bondNa magnetic dipole interaction of nearest neighbors. Values of M2 obtained as a function of sodium number density N were in agreement with models for uniform sodium distribution, indicating that these invert glass systems form so as to maximize the average Nasingle bondNa distance. A simple Coulombic attraction model between Na+ cation and X (=S−, O−) anion was applied to calculate the activation energy. In the range 1.5 ≤ x ≤ 7, an increase in activation energy with increasing oxygen content x occurred, and was consistent with the decrease in average anionic radius, and the increase in Coulombic attraction. For small oxygen additions, 0 ≤ x ≤ 1.5, the suggested minimum at low oxygen concentration seen in the activation energies obtained from DC conductivity data is not evident in the model. 
    more » « less
  2. The intermetallic compound LiMnBi was synthesized by the two-step solid-state reaction from the elements. A synthesis temperature of 850 K was selected based on in situ high-temperature powder X-ray diffraction data. LiMnBi crystalizes in the layered-like PbClF structure type (a = 4.3131(7) Å, c = 7.096(1) Å at 100 K, P4/nmm space group, Z = 2). The LiMnBi structure is built of alternating [MnBi] and Li layers, as determined from single-crystal X-ray diffraction data. Magnetic property measurements and solid-state 7Li nuclear magnetic resonance data collected for polycrystalline LiMnBi samples indicate the long-range antiferromagnetic ordering of the Mn sublattice at ∼340 K, with no superconductivity detected down to 5 K. LiMnBi is air- and water-sensitive. Under aerobic conditions, Li can be extracted from the LiMnBi structure to form Li2O/LiOH and MnBi (NiAs structure type, P63/mmc). The obtained MnBi polymorph was previously reported to be one of the strongest rare-earth-free ferromagnets, yet its bulk synthesis in powder form is cumbersome. The proposed magneto-structural transformation from ternary LiMnBi to ferromagnetic MnBi involves condensation of the MnBi4 tetrahedra upon Li deintercalation and is exclusive to LiMnBi. In contrast, ferromagnetic MnBi cannot be obtained from either isostructural NaMnBi and KMnBi or from the structurally related CaMn2Bi2. Such a distinctive transformation in the case of LiMnBi is presumed to be due to its fitting reactivity to yield MnBi and a favorable interlayer distance between [MnBi] layers, while the interlayer distance in NaMnBi and KMnBi structural analogues is unfavorably long. The studies of delithiation from layered-like LiMnBi under different chemical environments indicate that the yield of MnBi depends on the type of solvent used and the kinetics of the reaction. A slow rate and mild reaction media lead to a high fraction of the MnBi product. The saturation magnetization of the “as-prepared” MnBi is ∼50% of the expected value of 81.3 emu/g. Overall, this study adds a missing member to the family of ternary pnictides and illustrates how soft-chemistry methods can be used to obtain “difficult-to-synthesize” compounds. 
    more » « less