skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Furuta, Masanori"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Grid, place, and border cells in the mammalian hippocampus and entorhinal cortex perform highly sophisticated navigational tasks with an extremely low power budget. While previous algorithms for simultaneous localization and mapping (SLAM) in robotics have used these cells for inspiration, they have sacrificed the robust, low-power gains achieved with bioplausible models for ease of implementation. This paper presents steps towards robotic navigation with biologically realistic hippocampal models by implementing velocity-controlled oscillators, a basis for any spatially-tuned neuron, on mixed-mode neuromorphic spiking hardware. 
    more » « less