skip to main content


Search for: All records

Creators/Authors contains: "Fusella, Michael A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Electron backscattered diffraction (EBSD) is a technique regularly used to obtain crystallographic information from inorganic samples. When EBSD is acquired simultaneously with emitting diodes data, a sample can be thoroughly characterized both structurally and compositionally. For organic materials, coherent Kikuchi patterns do form when the electron beam interacts with crystalline material. However, such patterns tend to be weak due to the low average atomic number of organic materials. This is compounded by the fact that the patterns fade quickly and disappear completely once a critical electron dose is exceeded, inhibiting successful collection of EBSD maps from them. In this study, a new approach is presented that allows successful collection of EBSD maps from organic materials, here the extreme example of a hydrocarbon organic molecular thin film, and opens new avenues of characterization for crystalline organic materials. 
    more » « less
  2. Abstract

    Highly crystalline thin films in organic semiconductors are important for applications in high‐performance organic optoelectronics. Here, the effect of grain boundaries on the Hall effect and charge transport properties of organic transistors based on two exemplary benchmark systems is elucidated: (1) solution‐processed blends of 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene (C8‐BTBT) small molecule and indacenodithiophene‐benzothiadiazole (C16IDT‐BT) conjugated polymer, and (2) large‐area vacuum evaporated polycrystalline thin films of rubrene (C42H28). It is discovered that, despite the high field‐effect mobilities of up to 6 cm2V−1s−1and the evidence of a delocalized band‐like charge transport, the Hall effect in polycrystalline organic transistors is systematically and significantly underdeveloped, with the carrier coherence factor α < 1 (i.e., yields an underestimated Hall mobility and an overestimated carrier density). A model based on capacitively charged grain boundaries explaining this unusual behavior is described. This work significantly advances the understanding of magneto‐transport properties of organic semiconductor thin films.

     
    more » « less
  3. Abstract

    Organic photovoltaic cells possess desirable practical characteristics, such as the potential for low‐cost fabrication on flexible substrates, but they lag behind their inorganic counterparts in performance due in part to fundamental energy loss mechanisms, such as overcoming the charge transfer (CT) state binding energy when photogenerated charge is transferred across the donor/acceptor interface. However, recent work has suggested that crystalline interfaces can reduce this binding energy due to enhanced CT state delocalization. Solar cells based on rubrene and C60are investigated as an archetypal system because it allows the degree of crystallinity to be moldulated from a highly disordered to highly ordered system. Using a postdeposition annealing method to transform as‐deposited amorphous rubrene thin films into ones that are highly crystalline, it is shown that the CT state of a highly crystalline rubrene/C60heterojunction undergoes extreme delocalization parallel to the interface leading to a band‐like state that exhibits a linear Stark effect. This state parallels the direct charge formation of inorganic solar cells and reduces energetic losses by 220 meV compared with 12 other archetypal heterojunctions reported in the literature.

     
    more » « less