- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Armbrust, E Virginia (1)
-
Brown, Christopher M (1)
-
Dugenne, Mathilde (1)
-
Finkel, Zoe V (1)
-
Follows, Michael J (1)
-
Fyfe, Matthew H (1)
-
Inomura, Keisuke (1)
-
Irwin, Andrew J (1)
-
Karl, David M (1)
-
Liefer, Justin D (1)
-
Ribalet, François (1)
-
White, Angelicque E (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Latitudinal patterns in ocean C:N:P reflect phytoplankton acclimation and macromolecular compositionThe proportions of carbon (C), nitrogen (N), and phosphorus (P) in surface ocean particulate matter deviate greatly from the canonical Redfield Ratio (C:N:P = 106:16:1) in space and time with significant implications for global carbon storage as this matter reaches the deep ocean. Recent work has revealed clear latitudinal patterns in C:N:P, yet the relative importance of ecological, physiological, or biochemical processes in creating these patterns is unclear. We present high-resolution, concurrent measurements of particulate C:N:P, macromolecular composition, environmental conditions, and plankton community composition from a transect spanning a subtropical-subpolar boundary, the North Pacific Transition Zone. We find that the summed contribution of macromolecules to particulate C, N, and P is consistent with, and provides interpretation for, particulate C:N:P patterns. A decline in particulate C:N from the subtropical to subpolar North Pacific largely reflects an increase in the relative contribution of protein compared to carbohydrate and lipid, whereas variation in C:P and N:P correspond to shifts in protein relative to polyphosphate, DNA, and RNA. Possible causes for the corresponding trends in C:N and macromolecular composition include physiological responses and changes in community structure of phytoplankton, which represented approximately 1/3rdof particulate C across the transect. Comparison with culture experiments and an allocation-based model of phytoplankton macromolecular composition suggest that physiological acclimation to changing nutrient supply is the most likely explanation for the latitudinal trend in C:N, offering both a mechanistic interpretation and biochemical basis for large-scale patterns in C:N:P.more » « less
An official website of the United States government
