skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gálvez, Waldo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We develop a general framework, called approximately-diverse dynamic programming (ADDP) that can be used to generate a collection of k≥2 maximally diverse solutions to various geometric and combinatorial optimization problems. Given an approximation factor 0≤c≤1, this framework also allows for maximizing diversity in the larger space of c-approximate solutions. We focus on two geometric problems to showcase this technique: 1. Given a polygon P, an integer k≥2 and a value c≤1, generate k maximally diverse c-nice triangulations of P. Here, a c-nice triangulation is one that is c-approximately optimal with respect to a given quality measure σ. 2. Given a planar graph G, an integer k≥2 and a value c≤1, generate k maximally diverse c-optimal Independent Sets (or, Vertex Covers). Here, an independent set S is said to be c-optimal if |S|≥c|S′| for any independent set S′ of G. Given a set of k solutions to the above problems, the diversity measure we focus on is the average distance between the solutions, where d(X,Y)=|XΔY|. For arbitrary polygons and a wide range of quality measures, we give poly(n,k) time (1−Θ(1/k))-approximation algorithms for the diverse triangulation problem. For the diverse independent set and vertex cover problems on planar graphs, we give an algorithm that runs in time 2^(O(k.δ^(−1).ϵ^(−2)).n^O(1/ϵ) and returns (1−ϵ)-approximately diverse (1−δ)c-optimal independent sets or vertex covers. Our triangulation results are the first algorithmic results on computing collections of diverse geometric objects, and our planar graph results are the first PTAS for the diverse versions of any NP-complete problem. Additionally, we also provide applications of this technique to diverse variants of other geometric problems. 
    more » « less
    Free, publicly-accessible full text available January 21, 2026