- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Gill, Tepper L. (2)
-
Gül, Erdal (2)
-
Mupasiri, Douglas (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. We show that there exist inequivalent representations of the dual space of C[0, 1] and of Lp[Rn] for p ∈ [1, ∞). We also show how these inequivalent representations reveal new and important results for both the operator and the geometric structure of these spaces. For example, if A is a proper closed subspace of C[0, 1], there always exists a closed subspace A⊥ (with the same definition as for L2[0, 1]) such that A∩A⊥ = {0} and A⊕A⊥ = C[0, 1]. Thus, the geometry of C[0, 1] can be viewed from a completely new perspective. At the operator level, we prove that every bounded linear operator A on C[0, 1] has a uniquely defined adjoint A∗ defined on C[0, 1], and both can be extended to bounded linear operators on L2[0, 1]. This leads to a polar decomposition and a spectral theorem for operators on the space. The same results also apply to Lp[Rn]. Another unexpected result is a proof of the Baire one approximation property (every closed densely defined linear operator on C[0, 1] is the limit of a sequence of bounded linear operators). A fundamental implication of this paper is that the use of inequivalent representations of the dual space is a powerful new tool for functional analysis.more » « less
-
Gül, Erdal; Gill, Tepper L. (, Mediterranean Journal of Mathematics)
An official website of the United States government
