skip to main content

Search for: All records

Creators/Authors contains: "Gadea, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The number of undergraduate researchers interested in pursuing neurophysiological research exceeds the research laboratory positions and hands-on course experiences available because these types of experiments often require extensive experience or expensive equipment. In contrast, genetic and molecular tools can more easily incorporate undergraduates with less time or training. With the explosion of newly sequenced genomes and transcriptomes, there is a large pool of untapped molecular and genetic information which would greatly inform neurophysiological processes. Classically trained neurophysiologists often struggle to make use of newly available genetic information for themselves and their trainees, despite the clear advantage of combining genetic and physiological techniques. This is particularly prevalent among researchers working with organisms that historically had no or only few genetic tools available. Combining these two fields will expose undergraduates to a greater variety of research approaches, concepts, and hands-on experiences. The goal of this manuscript is to provide an easily understandable and reproducible workflow that can be applied in both lab and classroom settings to identify genes involved in neuronal function. We outline clear learning objectives that can be acquired by following our workflow and assessed by peer-evaluation. Using our workflow, we identify and validate the sequence of two new Gammamore »Aminobutyric Acid A (GABAA) receptor subunit homologs in the recently published genome and transcriptome of the marbled crayfish, Procambarus virginalis. Altogether, this allows undergraduate students to apply their knowledge of the processes of gene expression to functional neuronal outcomes. It also provides them with opportunities to contribute significantly to physiological research, thereby exposing them to interdisciplinary approaches.« less