Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Beavers were not previously recognized as an Arctic species, and their engineering in the tundra is considered negligible. Recent findings suggest that beavers have moved into Arctic tundra regions and are controlling surface water dynamics, which strongly influence permafrost and landscape stability. Here we use 70 years of satellite images and aerial photography to show the scale and magnitude of northwestward beaver expansion in Alaska, indicated by the construction of over 10,000 beaver ponds in the Arctic tundra. The number of beaver ponds doubled in most areas between ~ 2003 and ~ 2017. Earlier stages of beaver engineering are evident in ~ 1980 imagery, and there is no evidence of beaver engineering in ~ 1952 imagery, consistent with observations from Indigenous communities describing the influx of beavers over the period. Rapidly expanding beaver engineering has created a tundra disturbance regime that appears to be thawing permafrost and exacerbating the effects of climate change.Free, publicly-accessible full text available December 1, 2023
-
The collapse of the steppe-tundra biome (mammoth steppe) at the end of the Pleistocene is used as an important example of top-down ecosystem cascades, where human hunting of keystone species led to profound changes in vegetation across high latitudes in the Northern Hemisphere. Alternatively, it is argued that this biome transformation occurred through a bottom-up process, where climate-driven expansion of shrub tundra ( Betula , Salix spp.) replaced the steppe-tundra vegetation that grazing megafauna taxa relied on. In eastern Beringia, these differing hypotheses remain largely untested, in part because the precise timing and spatial pattern of Late Pleistocene shrub expansion remains poorly resolved. This uncertainty is caused by chronological ambiguity in many lake sediment records, which typically rely on radiocarbon ( 14 C) dates from bulk sediment or aquatic macrofossils—materials that are known to overestimate the age of sediment layers. Here, we reexamine Late Pleistocene pollen records for which 14 C dating of terrestrial macrofossils is available and augment these data with 14 C dates from arctic ground-squirrel middens and plant macrofossils. Comparing these paleovegetation data with a database of published 14 C dates from megafauna remains, we find the postglacial expansion of shrub tundra preceded the regional extinctions ofmore »
-
Beavers have established themselves as a key component of low arctic ecosystems over the past several decades. Beavers are widely recognized as ecosystem engineers, but their effects on permafrost-dominated landscapes in the Arctic remain unclear. In this study, we document the occurrence, reconstruct the timing, and highlight the effects of beaver activity on a small creek valley confined by ice-rich permafrost on the Seward Peninsula, Alaska using multi-dimensional remote sensing analysis of satellite (Landsat-8, Sentinel-2, Planet CubeSat, and DigitalGlobe Inc./MAXAR) and unmanned aircraft systems (UAS) imagery. Beaver activity along the study reach of Swan Lake Creek appeared between 2006 and 2011 with the construction of three dams. Between 2011 and 2017, beaver dam numbers increased, with the peak occurring in 2017 (n = 9). Between 2017 and 2019, the number of dams decreased (n = 6), while the average length of the dams increased from 20 to 33 m. Between 4 and 20 August 2019, following a nine-day period of record rainfall (>125 mm), the well-established dam system failed, triggering the formation of a beaver-induced permafrost degradation feature. During the decade of beaver occupation between 2011 and 2021, the creek valley widened from 33 to 180 m (~450% increase) andmore »
-
null (Ed.)Lake formation and drainage are pervasive phenomena in permafrost regions. Drained lake basins (DLBs) are often the most common landforms in lowland permafrost regions in the Arctic (50% to 75% of the landscape). However, detailed assessments of DLB distribution and abundance are limited. In this study, we present a novel and scalable remote sensing-based approach to identifying DLBs in lowland permafrost regions, using the North Slope of Alaska as a case study. We validated this first North Slope-wide DLB data product against several previously published sub-regional scale datasets and manually classified points. The study area covered >71,000 km2, including a >39,000 km2 area not previously covered in existing DLB datasets. Our approach used Landsat-8 multispectral imagery and ArcticDEM data to derive a pixel-by-pixel statistical assessment of likelihood of DLB occurrence in sub-regions with different permafrost and periglacial landscape conditions, as well as to quantify aerial coverage of DLBs on the North Slope of Alaska. The results were consistent with previously published regional DLB datasets (up to 87% agreement) and showed high agreement with manually classified random points (64.4–95.5% for DLB and 83.2–95.4% for non-DLB areas). Validation of the remote sensing-based statistical approach on the North Slope of Alaska indicated thatmore »
-
This is the first study to generate and analyze the climate signal in blue intensity (BI) tree-ring chronologies from Alaska yellow-cedar (Callitropsis nootkatensis (D. Don) Oerst. ex D.P. Little). The latewood BI chronology shows a much stronger temperature sensitivity than ring width and can thus provide information on past climate. The well-replicated BI chronology exhibits a positive January–August mean maximum temperature signal for 1900–1975, after which it loses temperature sensitivity following the 1976–1977 shift in northeastern Pacific climate. The positive temperature response appears to recover and remains strong for the most recent decades, but the coming years will continue to test this observation. This temporary loss of temperature sensitivity from about 1976 to 1999 is not evident in ring width or in a change in forest health but is consistent with prior work linking cedar decline to warming. A confounding factor is the uncertain influence of a shift in color variation from the heartwood–sapwood boundary. Future expansion of the yellow-cedar BI network and further investigation of the influence of the heartwood–sapwood transitions in the BI signal will lead to a better understanding of the utility of this species as a climate proxy.
-
Abstract Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades.