skip to main content


Search for: All records

Creators/Authors contains: "Galbany, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present a search for luminous long-duration ambiguous nuclear transients (ANTs) similar to the unprecedented discovery of the extreme ambiguous event AT2021lwx with a $\gt 150$ d rise time and luminosity $10^{45.7}$ erg s$^{-1}$. We use the Lasair transient broker to search Zwicky Transient Facility (ZTF) data for transients lasting more than one year and exhibiting smooth declines. Our search returns 59 events, 7 of which we classify as ANTs assumed to be driven by accretion onto supermassive black holes. We propose the remaining 52 are stochastic variability from regular supermassive black hole accretion rather than distinct transients. We supplement the seven ANTs with three nuclear transients in ZTF that fail the light curve selection but have clear single flares and spectra that do not resemble typical active galactic nucleus. All of these 11 ANTs have a mid-infrared flare from an assumed dust echo, implying the ubiquity of dust around the black holes giving rise to ANTs. No events are more luminous than AT2021lwx, but one (ZTF19aamrjar) has twice the duration and a higher integrated energy release. On the other extreme, ZTF20abodaps reaches a luminosity close to AT2021lwx with a rise time $\lt 20$ d and that fades smoothly in $\gt 600$ d. We define a portion of rise-time versus flare amplitude space that selects ANTs with $\sim 50$ per cent purity against variable AGNs. We calculate a volumetric rate of $\gtrsim 3\times 10^{-11}$ Mpc$^{-1}$ yr$^{-1}$, consistent with the events being caused by tidal disruptions of intermediate and high-mass stars.

     
    more » « less
  2. ABSTRACT

    This paper describes the extended data release (eDR) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. It comprises science-grade quality data for 895 galaxies obtained with the Potsdam Multi Aperture Spectograph/PPak instrument at the 3.5-m telescope at the Calar Alto Observatory along the last 12 yr, using the V500 setup [3700–7500 Å, 6 Å/full-width at half-maximum (FWHM)] and the CALIFA observing strategy. It includes galaxies of any morphological type, star formation stage, a wide range of stellar masses (∼107–1012 M⊙), at an average redshift of ∼0.015 (90 per cent within 0.005 < z < 0.05). Primarily selected based on the projected size and apparent magnitude, we demonstrate that it can be volume corrected resulting in a statistically limited but representative sample of the population of galaxies in the nearby Universe. All the data were homogeneous re-reduced, introducing a set of modifications to the previous reduction. The most relevant is the development and implementation of a new cube-reconstruction algorithm that provides with an (almost) seeing-limited spatial resolution (FWHMPSF ∼ 1.0 arcsec). To illustrate the usability and quality of the data, we extracted two aperture spectra for each galaxy (central 1.5 arcsec and fully integrated), and analyse them using pyFIT3D. We obtain a set of observational and physical properties of both the stellar populations and the ionized gas, that have been compared for the two apertures, exploring their distributions as a function of the stellar masses and morphologies of the galaxies, comparing with recent results in the literature.

     
    more » « less
  3. ABSTRACT

    Gravitational lensing magnification of Type Ia supernovae (SNe Ia) allows information to be obtained about the distribution of matter on small scales. In this paper, we derive limits on the fraction $\alpha$ of the total matter density in compact objects (which comprise stars, stellar remnants, small stellar groupings, and primordial black holes) of mass M > 0.03 ${\rm M}_{\odot }$ over cosmological distances. Using 1532 SNe Ia from the Dark Energy Survey Year 5 sample (DES-SN5YR) combined with a Bayesian prior for the absolute magnitude M, we obtain α < 0.12 at the 95 per cent confidence level after marginalization over cosmological parameters, lensing due to large-scale structure, and intrinsic non-Gaussianity. Similar results are obtained using priors from the cosmic microwave background, baryon acoustic oscillations, and galaxy weak lensing, indicating our results do not depend on the background cosmology. We argue our constraints are likely to be conservative (in the sense of the values we quote being higher than the truth), but discuss scenarios in which they could be weakened by systematics of the order of $\Delta \alpha \sim 0.04$.

     
    more » « less
  4. Abstract

    Understanding the nature of the luminous 1991T-like supernovae (SNe) is of great importance to SN cosmology as they are likely to have been more common in the early Universe. In this paper, we explore the observational properties of 1991T-like SNe to study their relationship to other luminous, slow-declining Type Ia supernovae (SNe Ia). From the spectroscopic and photometric criteria defined in Phillips et al., we identify 17 1991T-like SNe from the literature. Combining these objects with 10 1991T-like SNe from the Carnegie Supernova Project-II, the spectra, light curves, and colors of these events, along with their host galaxy properties, are examined in detail. We conclude that 1991T-like SNe are closely related in essentially all of their UV, optical, and near-infrared properties—as well as their host galaxy parameters—to the slow-declining subset of Branch core-normal SNe and to the intermediate 1999aa-like events, forming a continuum of luminous SNe Ia. The overriding difference between these three subgroups appears to be the extent to which56Ni mixes into the ejecta, producing the premaximum spectra dominated by Feiiiabsorption, the broader UV light curves, and the higher luminosities that characterize the 1991T-like events. Nevertheless, the association of 1991T-like SNe with the rare Type Ia circumstellar material SNe would seem to run counter to this hypothesis, in which case 1991T-like events may form a separate subclass of SNe Ia, possibly arising from single-degenerate progenitor systems.

     
    more » « less
  5. ABSTRACT

    Type Ia Supernovae (SNe Ia) are a critical tool in measuring the accelerating expansion of the universe. Recent efforts to improve these standard candles have focused on incorporating the effects of dust on distance measurements with SNe Ia. In this paper, we use the state-of-the-art Dark Energy Survey 5 year sample to evaluate two different families of dust models: empirical extinction models derived from SNe Ia data and physical attenuation models from the spectra of galaxies. In this work, we use realistic simulations of SNe Ia to forward-model different models of dust and compare summary statistics in order to test different assumptions and impacts on SNe Ia data. Among the SNe Ia-derived models, we find that a logistic function of the total-to-selective extinction $R_V$ best recreates the correlations between supernova distance measurements and host galaxy properties, though an additional 0.02 mag of grey scatter is needed to fully explain the scatter in SNIa brightness in all cases. These empirically derived extinction distributions are highly incompatible with the physical attenuation models from galactic spectral measurements. From these results, we conclude that SNe Ia must either preferentially select extreme ends of galactic dust distributions, or that the characterization of dust along the SNe Ia line-of-sight is incompatible with that of galactic dust distributions.

     
    more » « less
  6. ABSTRACT

    Current and future Type Ia Supernova (SN Ia) surveys will need to adopt new approaches to classifying SNe and obtaining their redshifts without spectra if they wish to reach their full potential. We present here a novel approach that uses only photometry to identify SNe Ia in the 5-yr Dark Energy Survey (DES) data set using the SuperNNova classifier. Our approach, which does not rely on any information from the SN host-galaxy, recovers SNe Ia that might otherwise be lost due to a lack of an identifiable host. We select $2{,}298$ high-quality SNe Ia from the DES 5-yr data set an almost complete sample of detected SNe Ia. More than 700 of these have no spectroscopic host redshift and are potentially new SNIa compared to the DES-SN5YR cosmology analysis. To analyse these SNe Ia, we derive their redshifts and properties using only their light curves with a modified version of the SALT2 light-curve fitter. Compared to other DES SN Ia samples with spectroscopic redshifts, our new sample has in average higher redshift, bluer and broader light curves, and fainter host-galaxies. Future surveys such as LSST will also face an additional challenge, the scarcity of spectroscopic resources for follow-up. When applying our novel method to DES data, we reduce the need for follow-up by a factor of four and three for host-galaxy and live SN, respectively, compared to earlier approaches. Our novel method thus leads to better optimization of spectroscopic resources for follow-up.

     
    more » « less
  7. ABSTRACT

    Near-infrared (NIR) observations of normal Type Ia supernovae (SNe Ia) obtained between 150 and 500 d past maximum light reveal the existence of an extended plateau. Here, we present observations of the underluminous, 1991bg-like SN 2021qvv. Early, ground-based optical and NIR observations show that SN 2021qvv is similar to SN 2006mr, making it one of the dimmest, fastest evolving 1991bg-like SNe to date. Late-time (170–250 d) Hubble Space Telescope observations of SN 2021qvv reveal no sign of a plateau. An extrapolation of these observations backwards to earlier-phase NIR observations of SN 2006mr suggests the complete absence of an NIR plateau, at least out to 250 d. This absence may be due to a higher ionization state of the ejecta, as predicted by certain sub-Chandrasekhar-mass detonation models, or to the lower temperatures of the ejecta of 1991bg-like SNe, relative to normal SNe Ia, which might preclude their becoming fluorescent and shifting ultraviolet light into the NIR. This suggestion can be tested by acquiring NIR imaging of a sample of 1991bg-like SNe that covers the entire range from slowly evolving to fast-evolving events (0.2 ≲ sBV ≲ 0.6). A detection of the NIR plateau in slower evolving, hotter 1991bg-like SNe would provide further evidence that these SNe exist along a continuum with normal SNe Ia. Theoretical progenitor and explosion scenarios would then have to match the observed properties of both SN Ia subtypes.

     
    more » « less
  8. ABSTRACT

    We report the All-Sky Automated Survey for SuperNovae discovery of the tidal disruption event (TDE) ASASSN-23bd (AT 2023clx) in NGC 3799, a LINER galaxy with no evidence of strong active galactic nucleus (AGN) activity over the past decade. With a redshift of z = 0.01107 and a peak ultraviolet (UV)/optical luminosity of (5.4 ± 0.4) × 1042 erg s−1, ASASSN-23bd is the lowest-redshift and least-luminous TDE discovered to date. Spectroscopically, ASASSN-23bd shows H α and He i emission throughout its spectral time series, there are no coronal lines in its near-infrared spectrum, and the UV spectrum shows nitrogen lines without the strong carbon and magnesium lines typically seen for AGN. Fits to the rising ASAS-SN light curve show that ASASSN-23bd started to brighten on MJD 59988$^{+1}_{-1}$, ∼9 d before discovery, with a nearly linear rise in flux, peaking in the g band on MJD $60 \, 000^{+3}_{-3}$. Scaling relations and TDE light curve modelling find a black hole mass of ∼106 M⊙, which is on the lower end of supermassive black hole masses. ASASSN-23bd is a dim X-ray source, with an upper limit of $L_{0.3-10\, \mathrm{keV}} \lt 1.0\times 10^{40}$ erg s−1 from stacking all Swift observations prior to MJD 60061, but with soft (∼0.1 keV) thermal emission with a luminosity of $L_{0.3-2 \, \mathrm{keV}}\sim 4\times 10^{39}$ erg s−1 in XMM-Newton observations on MJD 60095. The rapid (t < 15 d) light curve rise, low UV/optical luminosity, and a luminosity decline over 40 d of ΔL40 ≈ −0.7 dex make ASASSN-23bd one of the dimmest TDEs to date and a member of the growing ‘Low Luminosity and Fast’ class of TDEs.

     
    more » « less
  9. Abstract

    We present the full Hubble diagram of photometrically classified Type Ia supernovae (SNe Ia) from the Dark Energy Survey supernova program (DES-SN). DES-SN discovered more than 20,000 SN candidates and obtained spectroscopic redshifts of 7000 host galaxies. Based on the light-curve quality, we select 1635 photometrically identified SNe Ia with spectroscopic redshift 0.10 <z< 1.13, which is the largest sample of supernovae from any single survey and increases the number of knownz> 0.5 supernovae by a factor of 5. In a companion paper, we present cosmological results of the DES-SN sample combined with 194 spectroscopically classified SNe Ia at low redshift as an anchor for cosmological fits. Here we present extensive modeling of this combined sample and validate the entire analysis pipeline used to derive distances. We show that the statistical and systematic uncertainties on cosmological parameters areσΩM,stat+sysΛCDM=0.017 in a flat ΛCDM model, and(σΩM,σw)stat+syswCDM= (0.082, 0.152) in a flatwCDM model. Combining the DES SN data with the highly complementary cosmic microwave background measurements by Planck Collaboration reduces by a factor of 4 uncertainties on cosmological parameters. In all cases, statistical uncertainties dominate over systematics. We show that uncertainties due to photometric classification make up less than 10% of the total systematic uncertainty budget. This result sets the stage for the next generation of SN cosmology surveys such as the Vera C. Rubin Observatory's Legacy Survey of Space and Time.

     
    more » « less
  10. Abstract

    We present the second and final release of optical spectroscopy of Type Ia supernovae (SNe Ia) obtained during the first and second phases of the Carnegie Supernova Project (CSP-I and CSP-II). The newly released data consist of 148 spectra of 30 SNe Ia observed in the course of CSP-I and 234 spectra of 127 SNe Ia obtained during CSP-II. We also present 216 optical spectra of 46 historical SNe Ia, including 53 spectra of 30 SNe Ia observed by the Calán/Tololo Supernova Survey. We combine these observations with previously published CSP data and publicly available spectra to compile a large sample of measurements of spectroscopic parameters at maximum light, consisting of pseudo-equivalent widths and expansion velocities of selected features for 232 CSP and historical SNe Ia (including more than 1000 spectra). Finally, we review some of the strongest correlations between spectroscopic and photometric properties of SNe Ia. Specifically, we define two samples: one consisting of SNe Ia discovered by targeted searches (most of them CSP-I objects) and the other composed of SNe Ia discovered by untargeted searches, which includes most of the CSP-II objects. The analyzed correlations are similar for both samples. We find a larger incidence of SNe Ia belonging to the cool and broad-line Branch subtypes among the events discovered by targeted searches, shallow-silicon SNe Ia are present with similar frequencies in both samples, while core normal SNe Ia are more frequent in untargeted searches.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025