skip to main content


Search for: All records

Creators/Authors contains: "Gali, Adam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Quantum information processing and quantum sensing is a central topic for researchers who are part of the Materials Research Society and the Quantum Staging Group is providing leadership and guidance in this context. We convened a workshop before the 2022 MRS Spring Meeting and covered four topics to explore challenges that need to be addressed to further promote and accelerate the development of materials with applications in quantum technologies. This article captures the discussions at this workshop and refers to the pertinent literature.

    Graphical abstract 
    more » « less
  2. Abstract

    Many advanced applications of diamond materials are now being limited by unknown surface defects, including in the fields of high power/frequency electronics and quantum computing and quantum sensing. Of acute interest to diamond researchers worldwide is the loss of quantum coherence in near‐surface nitrogen‐vacancy (NV) centers and the generation of associated magnetic noise at the diamond surface. Here for the first time is presented the observation of a family of primal diamond surface defects, which is suggested as the leading cause of band‐bending and Fermi‐pinning phenomena in diamond devices. A combination of density functional theory and synchrotron‐based X‐ray absorption spectroscopy is used to show that these defects introduce low‐lying electronic trap states. The effect of these states is modeled on band‐bending into the diamond bulk and it is shown that the properties of the important NV defect centers are affected by these defects. Due to the paramount importance of near‐surface NV center properties in a growing number of fields, the density of these defects is further quantified at the surface of a variety of differently‐treated device surfaces, consistent with best‐practice processing techniques in the literature. The identification and characterization of these defects has wide‐ranging implications for diamond devices across many fields.

     
    more » « less