We present a machine-learning approach to detect and analyze meteor echoes (MADAME), which is a radar data processing workflow featuring advanced machine-learning techniques using both supervised and unsupervised learning. Our results demonstrate that YOLOv4, a convolutional neural network (CNN)-based one-stage object detection model, performs remarkably well in detecting and identifying meteor head and trail echoes within processed radar signals. The detector can identify more than 80 echoes per minute in the testing data obtained from the Jicamarca high power large aperture (HPLA) radar. MADAME is also capable of autonomously processing data in an interferometer mode, as well as determining the target’s radiant source and vector velocity. In the testing data, the Eta Aquarids meteor shower could be clearly identified from the meteor radiant source distribution analyzed automatically by MADAME, thereby demonstrating the proposed algorithm’s functionality. In addition, MADAME found that about 50 percent of the meteors were traveling in inclined and near-inclined circular orbits. Furthermore, meteor head echoes with a trail are more likely to originate from shower meteor sources. Our results highlight the capability of advanced machine-learning techniques in radar signal processing, providing an efficient and powerful tool to facilitate future and new meteor research.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Galindo, Freddy (2)
-
Li, Yanlin (2)
-
Urbina, Julio (2)
-
Zhou, Qihou (2)
-
Huang, Tai-Yin (1)
-
Huang, Tai‐Yin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
Li, Yanlin ; Galindo, Freddy ; Urbina, Julio ; Zhou, Qihou ; Huang, Tai‐Yin ( , Radio Science)
Abstract A novel computer vision‐based meteor head echo detection algorithm is developed to study meteor fluxes and their physical properties, including initial range, range coverage, and radial velocity. The proposed Algorithm for Head Echo Automatic Detection (AHEAD) comprises a feature extraction function and a Convolutional Neural Network (CNN). The former is tailored to identify meteor head echoes, and then a CNN is employed to remove false alarms. In the testing of meteor data collected with the Jicamarca 50 MHz incoherent scatter radar, the new algorithm detects over 180 meteors per minute at dawn, which is 2 to 10 times more sensitive than prior manual or algorithmic approaches, with a false alarm rate less than 1 percent. The present work lays the foundation of developing a fully automatic AI‐meteor package that detects, analyzes, and distinguishes among many types of meteor echoes. Furthermore, although initially evaluated for meteor data collected with the Jicamarca VHF incoherent radar, the new algorithm is generic enough that can be applied to other facilities with minor modifications. The CNN removes up to 98 percent of false alarms according to the testing set. We also present and discuss the physical characteristics of meteors detected with AHEAD, including flux rate, initial range, line of sight velocity, Signal‐to‐Noise Ratio, and noise characteristics. Our results indicate that stronger meteor echoes are detected at a slightly lower altitude and lower radial velocity than other meteors.