skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gallego-Sala, Angela V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract The carbon (C) accumulation histories of peatlands are of great interest to scientists, land users and policy makers. Because peatlands contain more than 500 billion tonnes of C, an understanding of the fate of this dynamic store, when subjected to the pressures of land use or climate change, is an important part of climate-change mitigation strategies. Information from peat cores is often used to recreate a peatland’s C accumulation history from recent decades to past millennia, so that comparisons between past and current rates can be made. However, these present day observations of peatlands’ past C accumulation rates (known as the apparent rate of C accumulation - aCAR) are usually different from the actual uptake or loss of C that occurred at the time (the true C balance). Here we use a simple peatland model and a more detailed ecosystem model to illustrate why aCAR should not be used to compare past and current C accumulation rates. Instead, we propose that data from peat cores are used with existing or new C balance models to produce reliable estimates of how peatland C function has changed over time. 
    more » « less
  2. Abstract. Peatlands have often been neglected in Earth system models (ESMs).Where they are included, they are usually represented via a separate, prescribed grid cell fraction that is given the physical characteristics of a peat (highly organic) soil. However, in reality soils vary on a spectrum between purely mineral soil (no organic material) and purely organicsoil, typically with an organic layer of variable thickness overlying mineral soil below. They are also dynamic, with organic layer thickness and its properties changing over time. Neither the spectrumof soil types nor their dynamic nature can be captured by current ESMs. Here we present a new version of an ESM land surface scheme (Joint UK Land Environment Simulator, JULES) where soil organic matter accumulation – and thus peatland formation, degradation and stability – is integratedin the vertically resolved soil carbon scheme. We also introduce the capacity to track soil carbon age as a function of depth in JULES and compare this to measured peat age–depth profiles. The new scheme is tested and evaluated at northern and temperate sites. This scheme simulates dynamic feedbacks between the soil organic material and its thermal and hydraulic characteristics. We show that draining the peatlands can lead to significant carbon loss, soil compaction and changes in peat properties. However, negative feedbacks can lead to the potential for peatlands to rewet themselves following drainage.These ecohydrological feedbacks can also lead to peatlands maintaining themselves in climates where peat formation would not otherwise initiate in the model, i.e. displaying some degree of resilience. The new model produces similar results to the original model for mineral soils and realistic profiles of soil organic carbon for peatlands.We evaluate the model against typical peat profiles based on 216 northern and temperate sites from a global dataset of peat cores.The root-mean-squared error (RMSE) in the soil carbon profile is reduced by 35 %–80 % in the best-performing JULES-Peat simulationscompared with the standard JULES configuration. The RMSE in these JULES-Peat simulations is 7.7–16.7 kg C m−3 depending on climate zone, which is considerably smaller than the soil carbon itself (around 30–60 kg C m−3). The RMSE at mineral soil sites is also reducedin JULES-Peat compared with the original JULES configuration (reduced by ∼ 30 %–50 %). Thus, JULES-Peat can be used as a complete scheme that simulates both organic and mineral soils. It does not requireany additional input data and introduces minimal additional variables to the model. This provides a new approach for improving the simulation of organic and peatland soils andassociated carbon-cycle feedbacks in ESMs. 
    more » « less