skip to main content

Search for: All records

Creators/Authors contains: "Gandhi, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To achieve human-like common sense about everyday life, machine learning systems must understand and reason about the goals, preferences, and actions of other agents in the environment. By the end of their first year of life, human infants intuitively achieve such common sense, and these cognitive achievements lay the foundation for humans' rich and complex understanding of the mental states of others. Can machines achieve generalizable, commonsense reasoning about other agents like human infants? The Baby Intuitions Benchmark (BIB) challenges machines to predict the plausibility of an agent's behavior based on the underlying causes of its actions. Because BIB's content and paradigm are adopted from developmental cognitive science, BIB allows for direct comparison between human and machine performance. Nevertheless, recently proposed, deep-learning-based agency reasoning models fail to show infant-like reasoning, leaving BIB an open challenge. 
    more » « less
  2. null (Ed.)
    Strong inductive biases allow children to learn in fast and adaptable ways. Children use the mutual exclusivity (ME) bias to help disambiguate how words map to referents, assuming that if an object has one label then it does not need another. In this paper, we investigate whether or not vanilla neural architectures have an ME bias, demonstrating that they lack this learning assumption. Moreover, we show that their inductive biases are poorly matched to lifelong learning formulations of classification and translation. We demonstrate that there is a compelling case for designing task-general neural networks that learn through mutual exclusivity, which remains an open challenge. 
    more » « less