skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Gangbo, Wilfrid"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2025
  2. We prove the existence, uniqueness, and regularity of minimizers of a polyconvex functional in two and three dimensions, which corresponds to theH1-projection of measure-preserving maps. Our result introduces a new criteria on the uniqueness of the minimizer, based on the smallness of the lagrange multiplier. No estimate on the second derivatives of the pressure is needed to get a unique global minimizer. As an application, we construct a minimizing movement scheme to constructLr-solutions of the Navier–Stokes equation (NSE) for a short time interval. 
    more » « less
  3. Abstract We study the free probabilistic analog of optimal couplings for the quadratic cost, where classical probability spaces are replaced by tracial von Neumann algebras, and probability measures on $${\mathbb {R}}^m$$ R m are replaced by non-commutative laws of m -tuples. We prove an analog of the Monge–Kantorovich duality which characterizes optimal couplings of non-commutative laws with respect to Biane and Voiculescu’s non-commutative $$L^2$$ L 2 -Wasserstein distance using a new type of convex functions. As a consequence, we show that if ( X ,  Y ) is a pair of optimally coupled m -tuples of non-commutative random variables in a tracial $$\mathrm {W}^*$$ W ∗ -algebra $$\mathcal {A}$$ A , then $$\mathrm {W}^*((1 - t)X + tY) = \mathrm {W}^*(X,Y)$$ W ∗ ( ( 1 - t ) X + t Y ) = W ∗ ( X , Y ) for all $$t \in (0,1)$$ t ∈ ( 0 , 1 ) . Finally, we illustrate the subtleties of non-commutative optimal couplings through connections with results in quantum information theory and operator algebras. For instance, two non-commutative laws that can be realized in finite-dimensional algebras may still require an infinite-dimensional algebra to optimally couple. Moreover, the space of non-commutative laws of m -tuples is not separable with respect to the Wasserstein distance for $$m > 1$$ m > 1 . 
    more » « less
  4. The classical Monge–Kantorovich (MK) problem as originally posed is concerned with how best to move a pile of soil or rubble to an excavation or fill with the least amount of work relative to some cost function. When the cost is given by the square of the Euclidean distance, one can define a metric on densities called the Wasserstein distance . In this note, we formulate a natural matrix counterpart of the MK problem for positive-definite density matrices. We prove a number of results about this metric including showing that it can be formulated as a convex optimisation problem, strong duality, an analogue of the Poincaré–Wirtinger inequality and a Lax–Hopf–Oleinik–type result. 
    more » « less
  5. We endow the set of probability measures on a weighted graph with a Monge–Kantorovich metric induced by a function defined on the set of edges. The graph is assumed to have n vertices and so the boundary of the probability simplex is an affine ( n − 2)-chain. Characterizing the geodesics of minimal length which may intersect the boundary is a challenge we overcome even when the endpoints of the geodesics do not share the same connected components. It is our hope that this work will be a preamble to the theory of mean field games on graphs. 
    more » « less