skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ganguly, Auroop Ratan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract Natural climate variability, captured through multiple initial condition ensembles, may be comparable to the variability caused by knowledge gaps in future emissions trajectories and in the physical science basis, especially at adaptation-relevant scales and projection horizons. The relations to chaos theory, including sensitivity to initial conditions, have caused the resulting variability in projections to be viewed as the irreducible uncertainty component of climate. The multiplier effect of ensembles from emissions-trajectories, multiple-models and initial-conditions contribute to the challenge. We show that ignoring this variability results in underestimation of precipitation extremes return periods leading to maladaptation. However, we show that concatenating initial-condition ensembles results in reduction of hydroclimate uncertainty. We show how this reduced uncertainty in precipitation extremes percolates to adaptation-relevant-Depth-Duration Frequency curves. Hence, generation of additional initial condition ensembles therefore no longer needs to be viewed as an uncertainty explosion problem but as a solution that can lead to uncertainty reduction in assessment of extremes. 
    more » « less