skip to main content

Search for: All records

Creators/Authors contains: "Ganju, Neil K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Global assessments predict the impact of sea-level rise on salt marshes with present-day levels of sediment supply from rivers and the coastal ocean. However, these assessments do not consider that variations in marsh extent and the related reconfiguration of intertidal area affect local sediment dynamics, ultimately controlling the fate of the marshes themselves. We conducted a meta-analysis of six bays along the United States East Coast to show that a reduction in the current salt marsh area decreases the sediment availability in estuarine systems through changes in regional-scale hydrodynamics. This positive feedback between marsh disappearance and the ability of coastal bays to retain sediments reduces the trapping capacity of the whole tidal system and jeopardizes the survival of the remaining marshes. We show that on marsh platforms, the sediment deposition per unit area decreases exponentially with marsh loss. Marsh erosion enlarges tidal prism values and enhances the tendency toward ebb dominance, thus decreasing the overall sediment availability of the system. Our findings highlight that marsh deterioration reduces the sediment stock in back-barrier basins and therefore compromises the resilience of salt marshes.
  2. Abstract

    Sediment supply is a primary factor in determining marsh response to sea level rise and is typically approximated through high‐resolution measurements of suspended sediment concentrations (SSCs) from adjacent tidal channels. However, understanding sediment transport across the marsh itself remains limited by discontinuous measurements of SSC over individual tidal cycles. Here, we use an array of optical turbidity sensors to build a long‐term, continuous record of SSC across a marsh platform and adjacent tidal channel. We find that channel and marsh concentrations are correlated (i.e., coupled) within tidal cycles but are largely decoupled over longer time scales. We also find that net sediment fluxes decline to near zero within 10 m of the marsh edge. Together, these results suggest that large sections of the marsh platform receive minimal sediment independent of flooding frequency or channel sediment supply. Marsh‐centric, as opposed to channel‐centric, measures of sediment supply may better characterize marsh platform vulnerability.

  3. Abstract

    Salt marsh assessments focus on vertical metrics such as accretion or lateral metrics such as open‐water conversion, without exploration of how the dimensions are related. We exploited a novel geospatial data set to explore how elevation is related to the unvegetated‐vegetated marsh ratio (UVVR), a lateral metric, across individual marsh “units” within four estuarine‐marsh systems. We find that elevation scales consistently with the UVVR across systems, with lower elevation units demonstrating more open‐water conversion and higher UVVRs. A normalized elevation‐UVVR relationship converges across systems near the system‐mean elevation and a UVVR of 0.1, a critical threshold identified by prior studies. This indicates that open‐water conversion becomes a dominant lateral instability process at a relatively conservative elevation threshold. We then integrate the UVVR and elevation to yield lifespan estimates, which demonstrate that higher elevation marshes are more resilient to internal deterioration, with an order‐of‐magnitude longer lifespan than predicted for lower elevation marshes.