skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gao, Christina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The homogeneous precession domain (HPD) of superfluid 3 He has recently been identified as a detection medium which might provide sensitivity to the axion-nucleon coupling 𝑔𝑎⁢𝑁⁢𝑁 competitive with, or surpassing, existing experimental proposals. In this work, we make a detailed study of the statistical and dynamical properties of the HPD system in order to make realistic projections for a full-fledged experimental program. We include the effects of clock error and measurement error in a concrete readout scheme using superconducting qubits and quantum metrology. This work also provides a more general framework to describe the statistics associated with the axion gradient coupling through the treatment of a transient resonance with a nonstationary background in a time-series analysis. Incorporating an optimal data-taking and analysis strategy, we project a sensitivity approaching 𝑔𝑎⁢𝑁⁢𝑁 ∼10−12  GeV−1 across a decade in axion mass. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. The hypothetical axion particle (of unknown mass) is a leading candidate for dark matter (DM). Many experiments search for axions with microwave cavities, where an axion may convert into a cavity photon, leading to a feeble excess in the output power of the cavity. Recent work [Backes et al., Nature 590, 238 (2021)] has demonstrated that injecting squeezed vacuum into the cavity can substantially accelerate the axion search. Here, we go beyond and provide a theoretical framework to leverage the benefits of quantum squeezing in a network setting consisting of many sensor cavities. By forming a local sensor network, the signals among the cavities can be combined coherently to boost the axion search. Furthermore, injecting multipartite entanglement across the cavities—generated by splitting a squeezed vacuum—enables a global noise reduction. We explore the performance advantage of such a local, entangled sensor network, which enjoys both coherence between the axion signals and entanglement between the sensors. Our analyses are pertinent to next-generation DM-axion searches aiming to leverage a network of sensors and quantum resources in an optimal way. Finally, we assess the possibility of using a more exotic quantum state, the Gottesman-Kitaev-Preskill (GKP) state. Despite a constant-factor improvement in the scan time relative to a single-mode squeezed state in the ideal case, the advantage of employing a GKP state disappears when a practical measurement scheme is considered. 
    more » « less