skip to main content


Search for: All records

Creators/Authors contains: "Gao, Han-Wen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Metal-boron triple bonds are rare due to the electron deficiency of boron.

     
    more » « less
  2. We report a study on the electronic structure and chemical bonding of the BiB molecule using high-resolution photoelectron imaging of cryogenically cooled BiB− anion. By eliminating all the vibrational hot bands, we can resolve the complicated detachment transitions due to the open-shell nature of BiB and the strong spin–orbit coupling. The electron affinity of BiB is measured to be 2.010(1) eV. The ground state of BiB− is determined to be 2Π(3/2) with a σ2π3 valence electron configuration, while the ground state of BiB is found to be 3Σ−(0+) with a σ2π2 electron configuration. Eight low-lying spin–orbit excited states [3Σ−(1), 1Δ(2), 1Σ+(0+), 3Π(2), 3Π(1), 1Π(1)], including two forbidden transitions, [3Π(0−) and 3Π(0+)], are observed for BiB as a result of electron detachment from the σ and π orbitals of BiB−. The angular distribution information from the photoelectron imaging is found to be critical to distinguish detachment transitions from the σ or π orbital for the spectral assignment. This study provides a wealth of information about the low-lying electronic states and spin–orbit coupling of BiB, demonstrating the importance of cryogenic cooling for obtaining well-resolved photoelectron spectra for size-selected clusters produced from a laser vaporization cluster source.

     
    more » « less
  3. We report a temperature-controlled photoelectron imaging study of SbO2–, produced from a laser vaporization source and cooled in a cryogenic 3D Paul trap. Vibrationally resolved photoelectron spectra are obtained for the ground state detachment transition, yielding the bending frequencies for both SbO2 and SbO2–. Franck-Condon simulations also allow the estimate of the vibrational temperature of the trapped SbO2– anion. A near-threshold spectrum of SbO2– at a photon energy of 3.4958 eV reveals partially resolved rotational structure for the 0-0 transition, which yields an accurate electron affinity of 3.4945 ± 0.0004 eV for SbO2. The rotational simulation also yields an estimated rotational temperature of the trapped ions. 
    more » « less
  4. The advent of ion traps as cooling devices has revolutionized ion spectroscopy as it is now possible to efficiently cool ions vibrationally and rotationally to levels where truly high-resolution experiments are now feasible. Here, we report the first results of a new experimental apparatus that couples a cryogenic 3D Paul trap with a laser vaporization cluster source for high-resolution photoelectron imaging of cold cluster anions. We have demonstrated the ability of the new apparatus to efficiently cool BiO − and BiO 2 − to minimize vibrational hot bands and allow high-resolution photoelectron images to be obtained. The electron affinities of BiO and BiO 2 are measured accurately for the first time to be 1.492(1) and 3.281(1) eV, respectively. Vibrational frequencies for the ground states of BiO and BiO 2 , as well as those for the anions determined from temperature-dependent studies, are reported. 
    more » « less