Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent efforts to obtain high data rates in wireless systems have focused on what can be achieved in systems that have nonlinear or coarsely quantized transceiver architectures. Estimating the channel in such a system is challenging because the nonlinearities distort the channel estimation process. It is therefore of interest to determine how much training is needed to estimate the channel sufficiently well so that the channel estimate can be used during data communication. We provide a way to determine how much training is needed by deriving a lower bound on the achievable rate in a training-based scheme that can bemore »
-
Knowledge tracing is an essential and challenging task in intelligent tutoring systems, whose goal is to estimate students’ knowledge state based on their responses to questions. Although many models for knowledge tracing task are developed, most of them depend on either concepts or items as input and ignore the hierarchical structure of items, which provides valuable information for the prediction of student learning results. In this paper, we propose a novel deep hierarchical knowledge tracing (DHKT) model exploiting the hierarchical structure of items. In the proposed DHKT model, the hierarchical relations between concepts and items are modeled by the hingemore »
-
Abstract The accurate simulation of additional interactions at the ATLAS experiment for the analysis of proton–proton collisions delivered by the Large Hadron Collider presents a significant challenge to the computing resources. During the LHC Run 2 (2015–2018), there were up to 70 inelastic interactions per bunch crossing, which need to be accounted for in Monte Carlo (MC) production. In this document, a new method to account for these additional interactions in the simulation chain is described. Instead of sampling the inelastic interactions and adding their energy deposits to a hard-scatter interaction one-by-one, the inelastic interactions are presampled, independent of the hardmore »Free, publicly-accessible full text available December 1, 2023
-
Abstract The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with Geant4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPU-intensive component of the simulation—the calorimeter shower simulation—with faster simulation methods. Here, AtlFast3, the next generation of high-accuracy fast simulation in ATLAS, is introduced. AtlFast3 combines parameterized approaches with machine-learning techniques and is deployed tomore »Free, publicly-accessible full text available December 1, 2023
-
Free, publicly-accessible full text available March 1, 2023