skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gao, Yuxiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Peptide cyclization has dramatic effects on a variety of important properties, enhancing metabolic stability, limiting conformational flexibility, and altering cellular entry and intracellular localization. The hydrophilic, polyfunctional nature of peptides creates chemoselectivity challenges in macrocyclization, especially for natural sequences without biorthogonal handles. Herein, we describe a gaseous sulfonyl chloride derived reagent that achieves amine–amine, amine–phenol, and amine–aniline crosslinking through a minimalist linchpin strategy that affords macrocyclic urea or carbamate products. The cyclization reaction is metal‐mediated and involves a novel application of sulfine species that remains unexplored in aqueous or biological contexts. The aqueous method delivers unique cyclic or bicyclic topologies directly from a variety of natural bioactive peptides without the need for protecting‐group strategies. 
    more » « less
    Free, publicly-accessible full text available July 14, 2025
  2. Irina Tezaur, Josefin Ahlkrona (Ed.)
    We present a finite-element-based cohesive zone model for simulating the nonlinear fracture process driving the propagation of water-filled surface crevasses in floating ice tongues. The fracture process is captured using an interface element whose constitutive behavior is described by a bilinear cohesive law, and the bulk rheology of ice is described by a nonlinear elasto-viscoplastic model. The additional loading due to meltwater pressure within the crevasse is incorporated by combining the ideas of poromechanics and damage mechanics.We performed several numerical studies to explore the parametric sensitivity of surface crevasse depth to ice rheology, cohesive strength, density, and temperature for different levels of meltwater depth.We find that viscous (creep) strain accumulation promotes crevasse propagation and that surface crevasses propagate deeper in ice shelves/tongues if we consider depth-varying ice density and temperature profiles. Therefore, ice flow models must account for depth-varying density and temperature-dependent viscosity to appropriately describe calving outcomes. 
    more » « less