skip to main content

Search for: All records

Creators/Authors contains: "Gao, Z."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2022
  2. Recent advances in the blockchain research have been made in two important directions. One is refined resilience analysis utilizing game theory to study the consequences of selfish behavior of users (miners), and the other is the extension from a linear (chain) structure to a non-linear (graphical) structure for performance improvements, such as IOTA and Graphcoin. The first question that comes to mind is what improvements that a blockchain system would see by leveraging these new advances. In this paper, we consider three major properties for a blockchain system: α-partial verification, scalability, and finality-duration. We establish a formal framework and provemore »that no blockchain system can achieve ?-partial verification for any fixed constant ?, high scalability, and low finality-duration simultaneously. We observe that classical blockchain systems like Bitcoin achieves full verification (α=1) and low finality-duration, Ethereum 2.0 Sharding achieves low finality-duration and high scalability. We are interested in whether it is possible to partially satisfy the three properties.« less
    Free, publicly-accessible full text available May 1, 2022
  3. Copper sulphide (CuxS, x=1 to 2) is a metal chalcogenide semiconductor that exhibits useful optical and electrical properties due to the presence of copper vacancies. This makes CuxS thin films useful for a number of applications including infrared absorbing coatings, solar cells, thin-film electronics, and as a precursor for CZTS (Copper Zinc Tin Sulphide) thin films. Post-deposition sintering of CuxS nanoparticle films is a key process that affects the film properties and hence determines its operational characteristics in the above applications. Intense pulse light (IPL) sintering uses visible broad-spectrum xenon light to rapidly sinter nanoparticle films over large-areas, and ismore »compatible with methods such as roll-to-roll deposition for large-area deposition of colloidal nanoparticle films and patterns. This paper experimentally examines the effect of IPL parameters on sintering of CuxS thin films. As-deposited and sintered films are compared in terms of their crystal structure, as well as optical and electrical properties, as a function of the IPL parameters.« less