- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Alejo, Ivan A. (1)
-
Aleman, Teresa E. (1)
-
Almanza, Karina (1)
-
Alonso, William (1)
-
Altamirano Manriquez, Maria Guadalupe (1)
-
Armbrister, Tyler (1)
-
Astudillo, Yoshio (1)
-
Batistiana, Lyric (1)
-
Blas Guido, Jonathan S. (1)
-
Bustamante, Danilo E. (1)
-
Calderon, Martha S. (1)
-
Camacho Gonzalez, Jovany D. (1)
-
Cardoso, Suiry (1)
-
Castro, Jose (1)
-
Chombo Garcia, Maria N. (1)
-
Colin, Lissa P. (1)
-
Cortina, Karina G. (1)
-
Delgado, Andrea (1)
-
Drucker, Ben (1)
-
Espinoza Castro, Daniel (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A box-ball system is a collection of discrete time states. At each state, we have a collection of countably many boxes with each integer from 1 to n assigned to a unique box; the remaining boxes are considered empty. A permutation on n objects gives a box-ball system state by assigning the permutation in one-line notation to the first n boxes. After a finite number of steps, the system will reach a so-called soliton decomposition which has an integer partition shape. We prove the following: if the soliton decomposition of a permutation is a standard Young tableau or if its shape coincides with its Robinson–Schensted (RS) partition, then its soliton decomposition and its RS insertion tableau are equal. We study the time required for a box-ball system to reach a steady state. We also generalize Fukuda’s single-carrier algorithm to algorithms with more than one carrier.more » « less
-
Alejo, Ivan A.; Aleman, Teresa E.; Almanza, Karina; Alonso, William; Altamirano Manriquez, Maria Guadalupe; Armbrister, Tyler; Astudillo, Yoshio; Batistiana, Lyric; Blas Guido, Jonathan S.; Bustamante, Danilo E.; et al (, Mitochondrial DNA Part B)
An official website of the United States government

Full Text Available