skip to main content


Search for: All records

Creators/Authors contains: "Gardner, Tyler"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present measurements of the interferometrically resolved binary star system 12 Com and the single giant star 31 Com in the cluster Coma Berenices. 12 Com is a double-lined spectroscopic binary system consisting of a G7 giant and an A3 dwarf at the cluster turnoff. Using an extensive radial velocity data set and interferometric measurements from the Palomar Testbed Interferometer and the Center for High Angular Resolution Astronomy array, we measured massesM1= 2.64 ± 0.07MandM2= 2.10 ± 0.03M. Interferometry also allows us to resolve the giant and measure its size asR1= 9.12 ± 0.12 ± 0.01R. With the measured masses and radii, we find an age of 533 ± 41 ± 42 Myr. For comparison, we measure the radius of 31 Com to be 8.36 ± 0.15R. Based on the photometry and radius measurements, 12 Com A is likely the most evolved bright star in the cluster, large enough to be in the red giant phase, but too small to have core helium burning. Simultaneous knowledge of 12 Com A’s mass and photometry puts strong constraints on convective core overshooting during the main-sequence phase, which in turn reduces systematic uncertainties in the age. Increased precision in measuring this system also improves our knowledge of the progenitor of the cluster white dwarf WD1216+260.

     
    more » « less
  2. Abstract

    The cool hypergiant star RW Cephei is currently in a deep photometric minimum that began several years ago. This event bears a strong similarity to the Great Dimming of the red supergiant Betelgeuse that occurred in 2019–2020. We present the first resolved images of RW Cephei that we obtained with the CHARA Array interferometer. The angular diameter and Gaia distance estimates indicate a stellar radius of 900–1760R, which makes RW Cephei one of the largest stars known in the Milky Way. The reconstructed, near-infrared images show a striking asymmetry in the disk illumination with a bright patch offset from the center and a darker zone to the west. The imaging results depend on assumptions made about the extended flux, and we present two cases with and without allowing extended emission. We also present a recent near-infrared spectrum of RW Cep that demonstrates that the fading is much larger at visual wavelengths compared to that at near-infrared wavelengths as expected for extinction by dust. We suggest that the star’s dimming is the result of a recent surface mass ejection event that created a dust cloud that now partially blocks the stellar photosphere.

     
    more » « less
  3. Abstract

    To accurately characterize the planets a star may be hosting, stellar parameters must first be well determined.τCeti is a nearby solar analog and often a target for exoplanet searches. Uncertainties in the observed rotational velocities have made constrainingτCeti’s inclination difficult. For planet candidates from radial velocity (RV) observations, this leads to substantial uncertainties in the planetary masses, as only the minimum mass (msini) can be constrained with RV. In this paper, we used new long-baseline optical interferometric data from the CHARA Array with the MIRC-X beam combiner and extreme precision spectroscopic data from the Lowell Discovery Telescope with EXPRES to improve constraints on the stellar parameters ofτCeti. Additional archival data were obtained from a Tennessee State University Automatic Photometric Telescope and the Mount Wilson Observatory HK project. These new and archival data sets led to improved stellar parameter determinations, including a limb-darkened angular diameter of 2.019 ± 0.012 mas and rotation period of 46 ± 4 days. By combining parameters from our data sets, we obtained an estimate for the stellar inclination of 7° ± 7°. This nearly pole-on orientation has implications for the previously reported exoplanets. An analysis of the system dynamics suggests that the planetary architecture described by Feng et al. may not retain long-term stability for low orbital inclinations. Additionally, the inclination ofτCeti reveals a misalignment between the inclinations of the stellar rotation axis and the previously measured debris disk rotation axis (idisk= 35° ± 10°).

     
    more » « less
  4. Abstract We present preliminary results from our long-baseline interferometry (LBI) survey to constrain the multiplicity properties of intermediate-mass A-type stars within 80 pc. Previous multiplicity studies of nearby stars exhibit orbital separation distributions well fitted with a lognormal with peaks >15 au, increasing with primary mass. The A-star multiplicity survey of De Rosa et al., sensitive beyond 30 au but incomplete below 100 au, found a lognormal peak around 390 au. Radial velocity surveys of slowly rotating, chemically peculiar Am stars identified a significant number of very close companions with periods ≤5 days, ∼0.1 au, a result similar to surveys of O- and B-type primaries. With the improved performance of LBI techniques, we can probe these close separations for normal A-type stars where other surveys are incomplete. Our initial sample consists of 27 A-type primaries with estimated masses between 1.44 and 2.49 M ⊙ and ages 10–790 Myr, which we observed with the MIRC-X instrument at the CHARA Array. We use the open-source software CANDID to detect five companions, three of which are new, and derive a companion frequency of 0.19 − 0.06 + 0.11 over mass ratios of 0.25–1.0 and projected separations of 0.288–5.481 au. We find a probability of 10 −6 that our results are consistent with extrapolations based on previous models of the A-star companion population over the mass ratios and separations sampled. Our results show the need to explore these very close separations to inform our understanding of stellar formation and evolution processes. 
    more » « less
  5. Free, publicly-accessible full text available April 1, 2024
  6. Abstract

    The inner regions of protoplanetary disks host many complex physical processes such as star–disk interactions, magnetic fields, planet formation, and the migration of new planets. To study directly this region requires milliarcsecond angular resolution, beyond the diffraction limit of the world's largest optical telescopes and even too small for the millimeter-wave interferometer Atacama Large Millimeter/submillimeter Array (ALMA). However, we can use infrared interferometers to image the inner astronomical unit. Here, we present new results from the CHARA and VLTI arrays for the young and luminous Herbig Be star HD 190073. We detect a sub-astronomical unit (sub-AU) cavity surrounded by a ring-like structure that we interpret as the dust destruction front. We model the shape with six radial profiles, three symmetric and three asymmetric, and present a model-free image reconstruction. All the models are consistent with a near face-on disk with an inclination ≲20°, and we measure an average ring radius of 1.4 ± 0.2 mas (1.14 au). Around 48% of the total flux comes from the disk with 15% of that emission appearing to emerge from inside the inner rim. The cause of emission is still unclear, perhaps due to different dust grain compositions or gas emission. The skewed models and the imaging point to an off-center star, possibly due to binarity. Our image shows sub-AU structure, which seems to move between the two epochs inconsistently with Keplerian motion and we discuss possible explanations for this apparent change.

     
    more » « less
  7. Abstract

    Some evolved binaries, namely post–asymptotic giant branch (AGB) binaries, are surrounded by stable and massive circumbinary disks similar to protoplanetary disks found around young stars. Around 10% of these disks are transition disks: they have a large inner cavity in the dust. Previous interferometric measurements and modeling have ruled out these cavities being formed by dust sublimation and suggested that they are due to massive circumbinary planets that trap dust in the disk and produce the observed depletion of refractory elements on the surfaces of the post-AGB stars. In this study, we test an alternative scenario in which the large cavities could be due to dynamical truncation from the inner binary. We performed near-infrared interferometric observations with the CHARA Array on the archetype of such a transition disk around a post-AGB binary: AC Her. We detect the companion at ten epochs over 4 yr and determine the three-dimensional orbit using these astrometric measurements in combination with a radial velocity time series. This is the first astrometric orbit constructed for a post-AGB binary system. We derive the best-fit orbit with a semimajor axis of 2.01 ± 0.01 mas (2.83 ± 0.08 au), inclination (142.9 ± 1.1)°, and longitude of the ascending node (155.1 ± 1.8)°. We find that the theoretical dynamical truncation and dust sublimation radii are at least ∼3× smaller than the observed inner disk radius (∼21.5 mas or 30 au). This strengthens the hypothesis that the origin of the cavity is due to the presence of a circumbinary planet.

     
    more » « less
  8. Mérand, Antoine ; Sallum, Stephanie ; Sanchez-Bermudez, Joel (Ed.)
    The Michigan Young STar Imager at CHARA (MYSTIC) is a K-band interferometric beam combining instrument funded by the United States National Science Foundation, designed primarily for imaging sub-au scale disk structures around nearby young stars and to probe the planet formation process. Installed at the CHARA array in July 2021, with baselines up to 331 meters, MYSTIC provides a maximum angular resolution of λ/2B ∼ 0.7 mas. The instrument injects phase corrected light from the array into inexpensive, single-mode, polarization maintaining silica fibers, which are then passed via a vacuum feedthrough into a cryogenic dewar operating at 220 K for imaging. MYSTIC utilizes a high frame rate, ultra-low read noise SAPHIRA detector, and implements two beam combiners: a 6-telescope image plane beam combiner, based on the MIRC-X design, for targets as faint as 7.7 Kmag, as well as a 4-telescope integrated optic beam-combiner mode using a spare chip leftover from the GRAVITY instrument. MYSTIC is co-phased with the MIRC-X (J+H band) instrument for simultaneous fringe-tracking and imaging, and shares its software suite with the latter to allow a single observer to operate both instruments. Herein, we present the instrument design, review its operational performance, present early commissioning science observations, and propose upgrades to the instrument that could improve its K-band sensitivity to 10th magnitude in the near future. 
    more » « less
  9. Context. Stellar evolution models are highly dependent on accurate mass estimates, especially for highly massive stars in the early stages of stellar evolution. The most direct method for obtaining model-independent stellar masses is derivation from the orbit of close binaries. Aims. Our aim was to derive the first astrometric plus radial velocity orbit solution for the single-lined spectroscopic binary star MWC 166 A, based on near-infrared interferometry over multiple epochs and ∼100 archival radial velocity measurements, and to derive fundamental stellar parameters from this orbit. A supplementary aim was to model the circumstellar activity in the system from K band spectral lines. Methods. The data used include interferometric observations from the VLTI instruments GRAVITY and PIONIER, as well as the MIRC-X instrument at the CHARA Array. We geometrically modelled the dust continuum to derive relative astrometry at 13 epochs, determine the orbital elements, and constrain individual stellar parameters at five different age estimates. We used the continuum models as a base to examine differential phases, visibilities, and closure phases over the Br γ and He  I emission lines in order to characterise the nature of the circumstellar emission. Results. Our orbit solution suggests a period of P  = 367.7 ± 0.1 d, approximately twice as long as found with previous radial velocity orbit fits. We derive a semi-major axis of 2.61 ± 0.04 au at d  = 990 ± 50 pc, an eccentricity of 0.498 ± 0.001, and an orbital inclination of 53.6 ± 0.3°. This allowed the component masses to be constrained to M 1  = 12.2 ± 2.2  M ⊙ and M 2  = 4.9 ± 0.5  M ⊙ . The line-emitting gas was found to be localised around the primary and is spatially resolved on scales of ∼11 stellar radii, where the spatial displacement between the line wings is consistent with a rotating disc. Conclusions. The large spatial extent and stable rotation axis orientation measured for the Br γ and He  I line emission are inconsistent with an origin in magnetospheric accretion or boundary-layer accretion, but indicate an ionised inner gas disc around this Herbig Be star. We observe line variability that could be explained either with generic line variability in a Herbig star disc or V/R variations in a decretion disc scenario. We have also constrained the age of the system, with relative flux ratios suggesting an age of ∼(7 ± 2)×10 5 yr, consistent with the system being composed of a main-sequence primary and a secondary still contracting towards the main-sequence stage. 
    more » « less
  10. Abstract We started a survey with CHARA/MIRC-X and VLTI/GRAVITY to search for low-mass companions orbiting individual components of intermediate-mass binary systems. With the incredible precision of these instruments, we can detect astrometric “wobbles” from companions down to a few tens of microarcseconds. This allows us to detect any previously unseen triple systems in our list of binaries. We present the orbits of 12 companions around early F- to B-type binaries, 9 of which are new detections and 3 of which are first astrometric detections of known radial velocity (RV) companions. The masses of these newly detected components range from 0.45 to 1.3 M ⊙ . Our orbits constrain these systems to a high astrometric precision, with median residuals to the orbital fit of 20–50 μ as in most cases. For seven of these systems we include newly obtained RV data, which help us to identify the system configuration and to solve for masses of individual components in some cases. Although additional RV measurements are needed to break degeneracy in the mutual inclination, we find that the majority of these inner triples are not well aligned with the wide binary orbit. This hints that higher-mass triples are more misaligned compared to solar and lower-mass triples, though a thorough study of survey biases is needed. We show that the ARMADA survey is extremely successful at uncovering previously unseen companions in binaries. This method will be used in upcoming papers to constrain companion demographics in intermediate-mass binary systems down to the planetary-mass regime. 
    more » « less