skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Garg, U."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Free, publicly-accessible full text available August 1, 2025
  3. Lead-208 is the heaviest known doubly magic nucleus and its structure is therefore of special interest. Despite this magicity, which acts to provide a strong restorative force toward sphericity, it is known to exhibit both strong octupole correlations and some of the strongest quadrupole collectivity observed in doubly magic systems. In this Letter, we employ state-of-the-art experimental equipment to conclusively demonstrate, through four Coulomb-excitation measurements, the presence of a large, negative, spectroscopic quadrupole moment for both the vibrational octupole31and quadrupole21+state, indicative of a preference for prolate deformation of the states. The observed quadrupole moment is discussed in the context of the expected splitting of the33two-phonon states, due to the coupling of the quadrupole and octupole motion. These results are compared with theoretical values from three different methods, which are unable to reproduce both the sign and magnitude of this deformation. Thus, in spite of its well-studied nature,Pb208remains a puzzle for our understanding of nuclear structure.

    Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  4. High spin states in 104 Ag were populated via heavy-ion ( 32 S) induced fusion evaporation reaction at a beam energy of 110 MeV. The de-exciting γ-rays were detected by 18 Compton suppressed HPGe clover detectors, placed in different (θ, φ) angles. Spin of several excited states were assigned firmly from the present angular correlation measurement. 
    more » « less