skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Garraffo, Zulema"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Atlantic meridional overturning circulation (AMOC) plays a key role in climate due to uptake and redistribution of heat and carbon anomalies. This redistribution takes place along several main pathways that link the high-latitude North Atlantic with midlatitudes and the Southern Ocean and involves currents on a wide range of spatial scales. This numerical study examines the importance of mesoscale currents (“eddies”) in these AMOC pathways and associated time scales, using a highly efficient offline tracer model. The study uses two boundary impulse response (BIR) tracers, which can quantify the importance of the Atlantic tracer exchanges with the high-latitude atmosphere in the north and with the Southern Ocean in the south. The results demonstrate that mesoscale advection leads to an increase in the overall BIR inventory during the first 100 years and results in a more efficient and spatially uniform ventilation of the deep Atlantic. Mesoscale currents also facilitate meridional spreading of the BIR tracer and thus assist the large-scale advection. The results point toward the importance of spatial inhomogeneity and anisotropy of the eddy-induced mixing in several mixing “hotspots,” as revealed by an eddy diffusivity tensor. Conclusions can be expected to assist evaluations of eddy-permitting simulations that stop short of full resolution of mesoscale, as well as development of eddy parameterization schemes. 
    more » « less