skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gartland, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We prove that the tree independence number of every even-hole-free graph is at most polylogarithmic in its number of vertices. More explicitly, we prove that there exists a constant c > 0 such that for every integer n > 1 every n-vertex even-hole-free graph has a tree decomposition where each bag has stability (independence) number at most clog10 n. This implies that the Maximum Weight Independent Set problem, as well as several other natural algorithmic problems that are known to be NP-hard in general, can be solved in quasipolynomial time if the input graph is even-hole-free. The quasi-polynomial complexity will remain the same even if the exponent of the logarithm is reduced to 1 (which would be asymptotically best possible). 
    more » « less
    Free, publicly-accessible full text available January 1, 2026