skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gary, Daniel P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Frontal polymerization is a process in which a localized reaction zone propagates through the coupling of thermal transport and the Arrhenius kinetics of exothermic polymerization. Most initiators that have been used produce volatile by‐products, which create bubbles and voids. Tetraalkyl ammonium persulfates have been used but these require synthesis and do not have long shelf lives. A charge transfer complex (CTC) composed of an iodonium salt, and a phosphine compound has been identified as a gas‐free initiator for free‐radical thermal frontal polymerization. This CTC has 4‐(dimethylamino)phenyldiphenly phophine (DMAPDP) as the donor and p‐(octyloxyphenyl)phenyliodonium hexafluoroantimonate as the acceptor (IOC‐8). The CTC was tested with several acrylates, and all were found to support bubble‐free fronts. We determined the CTC mole ratio for some monomers at which the front velocity reaches a plateau. 
    more » « less
    Free, publicly-accessible full text available September 15, 2025
  2. Abstract Formulations containing vinyl ethers and epoxy were successfully polymerized through a radical‐induced cationic frontal polymerization mechanism, using an iodonium salt superacid generator with a peroxide thermal radical initiator and fumed silica as a filler. It was found that an increase of vinyl ether content resulted in higher front velocities for divinyl ethers in formulations with trimethylolpropane triglycidyl ether. However, increased hydroxymonovinyl ether either decreased the front velocity or suppressed frontal polymerization. The kinetic effects of the superacid generator and thermal radical initiator with varying vinyl ether content were also studied. It was observed that increasing concentrations of initiators increased the front velocity, with the system exhibiting higher sensitivity to the superacid generator concentration. 
    more » « less