skip to main content


Search for: All records

Creators/Authors contains: "Gasparini, U."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2025
  2. Abstract

    A study of the anomalous couplings of the Higgs boson to vector bosons, including$${\textit{CP}}$$CP-violation effects, has been conducted using its production and decay in the WW channel. This analysis is performed on proton–proton collision data collected with the CMS detector at the CERN LHC during 2016–2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138$$\,\text {fb}^{-1}$$fb-1. The different-flavor dilepton$$({\textrm{e}} {{\upmu }})$$(eμ)final state is analyzed, with dedicated categories targeting gluon fusion, electroweak vector boson fusion, and associated production with a W or Z boson. Kinematic information from associated jets is combined using matrix element techniques to increase the sensitivity to anomalous effects at the production vertex. A simultaneous measurement of four Higgs boson couplings to electroweak vector bosons is performed in the framework of a standard model effective field theory. All measurements are consistent with the expectations for the standard model Higgs boson and constraints are set on the fractional contribution of the anomalous couplings to the Higgs boson production cross section.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  3. Abstract

    A measurement is presented of a ratio observable that provides a measure of the azimuthal correlations among jets with large transverse momentum$$p_{\textrm{T}}$$pT. This observable is measured in multijet events over the range of$$p_{\textrm{T}} = 360$$pT=360$$3170\,\text {Ge}\hspace{-.08em}\text {V} $$3170GeVbased on data collected by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13$$\,\text {Te}\hspace{-.08em}\text {V}$$TeV, corresponding to an integrated luminosity of 134$$\,\text {fb}^{-1}$$fb-1. The results are compared with predictions from Monte Carlo parton-shower event generator simulations, as well as with fixed-order perturbative quantum chromodynamics (pQCD) predictions at next-to-leading-order (NLO) accuracy obtained with different parton distribution functions (PDFs) and corrected for nonperturbative and electroweak effects. Data and theory agree within uncertainties. From the comparison of the measured observable with the pQCD prediction obtained with the NNPDF3.1 NLO PDFs, the strong coupling at the Z boson mass scale is$$\alpha _\textrm{S} (m_{{\textrm{Z}}}) =0.1177 \pm 0.0013\, \text {(exp)} _{-0.0073}^{+0.0116} \,\text {(theo)} = 0.1177_{-0.0074}^{+0.0117}$$αS(mZ)=0.1177±0.0013(exp)-0.0073+0.0116(theo)=0.1177-0.0074+0.0117, where the total uncertainty is dominated by the scale dependence of the fixed-order predictions. A test of the running of$$\alpha _\textrm{S}$$αSin the$$\,\text {Te}\hspace{-.08em}\text {V}$$TeVregion shows no deviation from the expected NLO pQCD behaviour.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  4. The first observation of the decayΞbψ(2S)Ξand measurement of the branching ratio ofΞbψ(2S)ΞtoΞbJ/ψΞare presented. TheJ/ψandψ(2S)mesons are reconstructed using their dimuon decay modes. The results are based on proton-proton colliding beam data from the LHC collected by the CMS experiment ats=13TeVin 2016–2018, corresponding to an integrated luminosity of140fb1. The branching fraction ratio is measured to beB(Ξbψ(2S)Ξ)/B(ΞbJ/ψΞ)=0.840.19+0.21(stat)±0.10(syst)±0.02(B), where the last uncertainty comes from the uncertainties in the branching fractions of the charmonium states. New measurements of theΞb(5945)0baryon mass and natural width are also presented, using theΞbπ+final state, where theΞbbaryon is reconstructed through the decaysJ/ψΞ,ψ(2S)Ξ,J/ψΛK, andJ/ψΣ0K. Finally, the fraction ofΞbbaryons produced fromΞb(5945)0decays is determined.

    <supplementary-material><permissions><copyright-statement>© 2024 CERN, for the CMS Collaboration</copyright-statement><copyright-year>2024</copyright-year><copyright-holder>CERN</copyright-holder></permissions></supplementary-material></sec> </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> Free, publicly-accessible full text available July 1, 2025</span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10537322-search-dark-qcd-emerging-jets-proton-proton-collisions-sqrt-tev" itemprop="url"> <span class='span-link' itemprop="name">Search for dark QCD with emerging jets in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1007/JHEP07(2024)142" target="_blank" title="Link to document DOI">https://doi.org/10.1007/JHEP07(2024)142  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Hayrapetyan, A</span> <span class="sep">; </span><span class="author" itemprop="author">Tumasyan, A</span> <span class="sep">; </span><span class="author" itemprop="author">Adam, W</span> <span class="sep">; </span><span class="author" itemprop="author">Andrejkovic, J W</span> <span class="sep">; </span><span class="author" itemprop="author">Bergauer, T</span> <span class="sep">; </span><span class="author" itemprop="author">Chatterjee, S</span> <span class="sep">; </span><span class="author" itemprop="author">Damanakis, K</span> <span class="sep">; </span><span class="author" itemprop="author">Dragicevic, M</span> <span class="sep">; </span><span class="author" itemprop="author">Hussain, P S</span> <span class="sep">; </span><span class="author" itemprop="author">Jeitler, M</span> <span class="sep">; </span><span class="author">et al</span></span> <span class="year">( <time itemprop="datePublished" datetime="2024-07-01">July 2024</time> , Journal of High Energy Physics) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> <title>A<sc>bstract</sc>

    A search for “emerging jets” produced in proton-proton collisions at a center-of-mass energy of 13 TeV is performed using data collected by the CMS experiment corresponding to an integrated luminosity of 138 fb1. This search examines a hypothetical dark quantum chromodynamics (QCD) sector that couples to the standard model (SM) through a scalar mediator. The scalar mediator decays into an SM quark and a dark sector quark. As the dark sector quark showers and hadronizes, it produces long-lived dark mesons that subsequently decay into SM particles, resulting in a jet, known as an emerging jet, with multiple displaced vertices. This search looks for pair production of the scalar mediator at the LHC, which yields events with two SM jets and two emerging jets at leading order. The results are interpreted using two dark sector models with different flavor structures, and exclude mediator masses up to 1950 (1950) GeV for an unflavored (flavor-aligned) dark QCD model. The unflavored results surpass a previous search for emerging jets by setting the most stringent mediator mass exclusion limits to date, while the flavor-aligned results provide the first direct mediator mass exclusion limits to date.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  5. Abstract

    A search for$${\text {Z}{}{}} {\text {Z}{}{}} $$ZZand$${\text {Z}{}{}} {\text {H}{}{}} $$ZHproduction in the$${\text {b}{}{}} {\bar{{\text {b}{}{}}}{}{}} {\text {b}{}{}} {\bar{{\text {b}{}{}}}{}{}} $$bb¯bb¯final state is presented, where H is the standard model (SM) Higgs boson. The search uses an event sample of proton-proton collisions corresponding to an integrated luminosity of 133$$\,\text {fb}^{-1}$$fb-1collected at a center-of-mass energy of 13$$\,\text {Te}\hspace{-.08em}\text {V}$$TeVwith the CMS detector at the CERN LHC. The analysis introduces several novel techniques for deriving and validating a multi-dimensional background model based on control samples in data. A multiclass multivariate classifier customized for the$${\text {b}{}{}} {\bar{{\text {b}{}{}}}{}{}} {\text {b}{}{}} {\bar{{\text {b}{}{}}}{}{}} $$bb¯bb¯final state is developed to derive the background model and extract the signal. The data are found to be consistent, within uncertainties, with the SM predictions. The observed (expected) upper limits at 95% confidence level are found to be 3.8 (3.8) and 5.0 (2.9) times the SM prediction for the$${\text {Z}{}{}} {\text {Z}{}{}} $$ZZand$${\text {Z}{}{}} {\text {H}{}{}} $$ZHproduction cross sections, respectively.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  6. A search for heavy neutral leptons (HNLs) decaying in the CMS muon system is presented. A data sample is used corresponding to an integrated luminosity of138fb1of proton-proton collisions ats=13TeV, recorded at the CERN LHC in 2016–2018. Decay products of long-lived HNLs could interact with the shielding materials in the CMS muon system and create hadronic and electromagnetic showers detected in the muon chambers. This distinctive signature provides a unique handle to search for HNLs with masses below 4 GeV and proper decay lengths of the order of meters. The signature is sensitive to HNL couplings to all three generations of leptons. Candidate events are required to contain a prompt electron or muon originating from a vertex on the beam axis and a displaced shower in the muon chambers. No significant deviations from the standard model background expectation are observed. In the electron (muon) channel, the most stringent limits to date are set for HNLs in the mass range of 2.1–3.0 (1.9–3.3) GeV, reaching mixing matrix element squared values as low as8.6(4.6)×106.

    © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  7. A<sc>bstract</sc>

    A search for Higgs boson pair (HH) production with one Higgs boson decaying to two bottom quarks and the other to two W bosons are presented. The search is done using proton-proton collisions data at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb1recorded by the CMS detector at the LHC from 2016 to 2018. The final states considered include at least one leptonically decaying W boson. No evidence for the presence of a signal is observed and corresponding upper limits on the HH production cross section are derived. The limit on the inclusive cross section of the nonresonant HH production, assuming that the distributions of kinematic observables are as expected in the standard model (SM), is observed (expected) to be 14 (18) times the value predicted by the SM, at 95% confidence level. The limits on the cross section are also presented as functions of various Higgs boson coupling modifiers, and anomalous Higgs boson coupling scenarios. In addition, limits are set on the resonant HH production via spin-0 and spin-2 resonances within the mass range 250–900 GeV.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  8. A<sc>bstract</sc>

    A search for long-lived heavy neutrinos (N) in the decays of B mesons produced in proton-proton collisions at$$ \sqrt{s} $$s= 13 TeV is presented. The data sample corresponds to an integrated luminosity of 41.6 fb1collected in 2018 by the CMS experiment at the CERN LHC, using a dedicated data stream that enhances the number of recorded events containing B mesons. The search probes heavy neutrinos with masses in the range 1 <mN< 3 GeV and decay lengths in the range 102<cτN< 104mm, where τNis the N proper mean lifetime. Signal events are defined by the signature B →BNX; N →±π, where the leptonsBandcan be either a muon or an electron, provided that at least one of them is a muon. The hadronic recoil system, X, is treated inclusively and is not reconstructed. No significant excess of events over the standard model background is observed in any of the±πinvariant mass distributions. Limits at 95% confidence level on the sum of the squares of the mixing amplitudes between heavy and light neutrinos, |VN|2, and oncτNare obtained in different mixing scenarios for both Majorana and Dirac-like N particles. The most stringent upper limit|VN|2< 2.0×105is obtained atmN= 1.95 GeV for the Majorana case where N mixes exclusively with muon neutrinos. The limits on|VN|2for masses 1 <mN< 1.7 GeV are the most stringent from a collider experiment to date.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  9. A search for the production of long-lived particles in proton-proton collisions at a center-of-mass energy of 13 TeV at the CERN LHC is presented. The search is based on data collected by the CMS experiment in 2016–2018, corresponding to a total integrated luminosity of137fb1. This search is designed to be sensitive to long-lived particles with mean proper decay lengths between 0.1 and 1000 mm, whose decay products produce a final state with at least one displaced vertex and missing transverse momentum. A machine learning algorithm, which improves the background rejection power by more than an order of magnitude, is applied to improve the sensitivity. The observation is consistent with the standard model background prediction, and the results are used to constrain split supersymmetry (SUSY) and gauge-mediated SUSY breaking models with different gluino mean proper decay lengths and masses. This search is the first CMS search that shows sensitivity to hadronically decaying long-lived particles from signals with mass differences between the gluino and neutralino below 100 GeV. It sets the most stringent limits to date for split-SUSY models and gauge-mediated SUSY breaking models with gluino proper decay length less than 6 mm.

    © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less
    Free, publicly-accessible full text available June 1, 2025