Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Direct deposition of organic light‐emitting diodes (OLEDs) on silicon‐based complementary metal–oxide–semiconductor (CMOS) chips has enabled self‐emissive microdisplays with high resolution and fill‐factor. Emerging applications of OLEDs in augmented and virtual reality (AR/VR) displays and in biomedical applications, e.g., as brain implants for cell‐specific light delivery in optogenetics, require light intensities orders of magnitude above those found in traditional displays. Further requirements often include a microscopic device footprint, a specific shape and ultrastable passivation, e.g., to ensure biocompatibility and minimal invasiveness of OLED‐based implants. In this work, up to 1024 ultrabright, microscopic OLEDs are deposited directly on needle‐shaped CMOS chips. Transmission electron microscopy and energy‐dispersive X‐ray spectroscopy are performed on the foundry‐provided aluminum contact pads of the CMOS chips to guide a systematic optimization of the contacts. Plasma treatment and implementation of silver interlayers lead to ohmic contact conditions and thus facilitate direct vacuum deposition of orange‐ and blue‐emitting OLED stacks leading to micrometer‐sized pixels on the chips. The electronics in each needle allow each pixel to switch individually. The OLED pixels generate a mean optical power density of 0.25 mW mm −2 , corresponding to >40 000 cd m −2 , well above the requirement for daylight AR applications and optogenetic single‐unit activation in the brain.more » « less
-
Abstract The use of optogenetic stimulation to evoke neuronal activity in targeted neural populations—enabled by opsins with fast kinetics, high sensitivity and cell-type and subcellular specificity—is a powerful tool in neuroscience. However, to interface with the opsins, deep-brain light delivery systems are required that match the scale of the spatial and temporal control offered by the molecular actuators. Here we show that organic light-emitting diodes can be combined with complementary metal–oxide–semiconductor technology to create bright, actively multiplexed emissive elements. We create implantable shanks in which 1,024 individually addressable organic light-emitting diode pixels with a 24.5 µm pitch are integrated with active complementary metal–oxide–semiconductor drive and control circuitry. This integration is enabled by controlled electrode conditioning, monolithic deposition of the organic light-emitting diodes and optimized thin-film encapsulation. The resulting probes can be used to access brain regions as deep as 5 mm and selectively activate individual neurons with millisecond-level precision in mice.more » « less
-
Abstract Despite widespread interest, ultrathin and highly flexible light-emitting devices that can be seamlessly integrated and used for flexible displays, wearables, and as bioimplants remain elusive. Organic light-emitting diodes (OLEDs) with µm-scale thickness and exceptional flexibility have been demonstrated but show insufficient stability in air and moist environments due to a lack of suitable encapsulation barriers. Here, we demonstrate an efficient and stable OLED with a total thickness of ≈ 12 µm that can be fully immersed in water or cell nutrient media for weeks without suffering substantial degradation. The active layers of the device are embedded between conformal barriers formed by alternating layers of parylene-C and metal oxides that are deposited through a low temperature chemical vapour process. These barriers also confer stability of the OLED to repeated bending and to extensive postprocessing, e.g. via reactive gas plasmas, organic solvents, and photolithography. This unprecedented robustness opens up a wide range of novel possibilities for ultrathin OLEDs.
-
Abstract Two bipolar host materials
3‐CBPy and4‐mCBPy are reported. These hosts are structural analogs of the common host materials CBP and mCBP wherein the phenyl rings have been replaced with pyridines. The two materials possess deep highest occupied molecular orbital (HOMO) and shallow lowest unoccupied molecular orbital (LUMO) levels along with sufficiently high energyS 1andT 1states that make them suitable hosts for yellow emitters in electroluminescent devices. Yellow‐emitting thermally activated delayed fluorescence organic light‐emitting diodes are fabricated using 2,4,6‐tris (4‐(10H‐phenoxazin‐10‐yl)phenyl)‐1,3,5‐triazine (tri‐PXZ‐TRZ) as the dopant emitter with either3‐CBPy or4‐mCBPy employed as the host. Their device performance is compared to analogous devices using CBP and mCBP as host materials. The pyridine‐containing host devices show markedly improved external quantum efficiencies (EQE) and decreased roll‐off. The 7 wt% tri‐PXZ‐TRZ‐doped device exhibits very low turn‐on voltage (2.5 V for both3‐CBPy and4‐mCBPy ) along with maximum external quantum efficiencies (EQEmax) reaching 15.6% (for3‐CBPy ) and 19.4% (for4‐mCBPy ). The device using4‐mCBPy also exhibits very low efficiency roll‐off with an EQE of 16.0% at a luminance of 10 000 cd m−2.