Low-density cosmic voids gravitationally lens the cosmic microwave background (CMB), leaving a negative imprint on the CMB convergence $\kappa$. This effect provides insight into the distribution of matter within voids, and can also be used to study the growth of structure. We measure this lensing imprint by cross-correlating the Planck CMB lensing convergence map with voids identified in the Dark Energy Survey Year 3 (DES Y3) data set, covering approximately 4200 deg$^2$ of the sky. We use two distinct void-finding algorithms: a 2D void-finder that operates on the projected galaxy density field in thin redshift shells, and a new code, Voxel, which operates on the full 3D map of galaxy positions. We employ an optimal matched filtering method for cross-correlation, using the Marenostrum Institut de Ciències de l’Espai N-body simulation both to establish the template for the matched filter and to calibrate detection significances. Using the DES Y3 photometric luminous red galaxy sample, we measure $A_\kappa$, the amplitude of the observed lensing signal relative to the simulation template, obtaining $A_\kappa = 1.03 \pm 0.22$ ($4.6\sigma$ significance) for Voxel and $A_\kappa = 1.02 \pm 0.17$ ($5.9\sigma$ significance) for 2D voids, both consistent with Lambda cold dark matter expectations. We additionally invert the 2D void-finding process to identify superclusters in the projected density field, for which we measure $A_\kappa = 0.87 \pm 0.15$ ($5.9\sigma$ significance). The leading source of noise in our measurements is Planck noise, implying that data from the Atacama Cosmology Telescope, South Pole Telescope and CMB-S4 will increase sensitivity and allow for more precise measurements.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
Abstract We present the full Hubble diagram of photometrically classified Type Ia supernovae (SNe Ia) from the Dark Energy Survey supernova program (DES-SN). DES-SN discovered more than 20,000 SN candidates and obtained spectroscopic redshifts of 7000 host galaxies. Based on the light-curve quality, we select 1635 photometrically identified SNe Ia with spectroscopic redshift 0.10 <
z < 1.13, which is the largest sample of supernovae from any single survey and increases the number of knownz > 0.5 supernovae by a factor of 5. In a companion paper, we present cosmological results of the DES-SN sample combined with 194 spectroscopically classified SNe Ia at low redshift as an anchor for cosmological fits. Here we present extensive modeling of this combined sample and validate the entire analysis pipeline used to derive distances. We show that the statistical and systematic uncertainties on cosmological parameters are 0.017 in a flat ΛCDM model, and = (0.082, 0.152) in a flatw CDM model. Combining the DES SN data with the highly complementary cosmic microwave background measurements by Planck Collaboration reduces by a factor of 4 uncertainties on cosmological parameters. In all cases, statistical uncertainties dominate over systematics. We show that uncertainties due to photometric classification make up less than 10% of the total systematic uncertainty budget. This result sets the stage for the next generation of SN cosmology surveys such as the Vera C. Rubin Observatory's Legacy Survey of Space and Time. -
ABSTRACT We present the joint tomographic analysis of galaxy-galaxy lensing and galaxy clustering in harmonic space (HS), using galaxy catalogues from the first three years of observations by the Dark Energy Survey (DES Y3). We utilize the redMaGiC and MagLim catalogues as lens galaxies and the metacalibration catalogue as source galaxies. The measurements of angular power spectra are performed using the pseudo-$C_\ell$ method, and our theoretical modelling follows the fiducial analyses performed by DES Y3 in configuration space, accounting for galaxy bias, intrinsic alignments, magnification bias, shear magnification bias and photometric redshift uncertainties. We explore different approaches for scale cuts based on non-linear galaxy bias and baryonic effects contamination. Our fiducial covariance matrix is computed analytically, accounting for mask geometry in the Gaussian term, and including non-Gaussian contributions and super-sample covariance terms. To validate our HS pipelines and covariance matrix, we used a suite of 1800 log-normal simulations. We also perform a series of stress tests to gauge the robustness of our HS analysis. In the $\Lambda$CDM model, the clustering amplitude $S_8 =\sigma _8(\Omega _m/0.3)^{0.5}$ is constrained to $S_8 = 0.704\pm 0.029$ and $S_8 = 0.753\pm 0.024$ (68 per cent C.L.) for the redMaGiC and MagLim catalogues, respectively. For the wCDM, the dark energy equation of state is constrained to $w = -1.28 \pm 0.29$ and $w = -1.26^{+0.34}_{-0.27}$, for redMaGiC and MagLim catalogues, respectively. These results are compatible with the corresponding DES Y3 results in configuration space and pave the way for HS analyses using the DES Y6 data.
-
Abstract We present
griz photometric light curves for the full 5 yr of the Dark Energy Survey Supernova (DES-SN) program, obtained with both forced point-spread function photometry on difference images (DiffImg ) performed during survey operations, and scene modelling photometry (SMP) on search images processed after the survey. This release contains 31,636DiffImg and 19,706 high-quality SMP light curves, the latter of which contain 1635 photometrically classified SNe that pass cosmology quality cuts. This sample spans the largest redshift (z ) range ever covered by a single SN survey (0.1 <z < 1.13) and is the largest single sample from a single instrument of SNe ever used for cosmological constraints. We describe in detail the improvements made to obtain the final DES-SN photometry and provide a comparison to what was used in the 3 yr DES-SN spectroscopically confirmed Type Ia SN sample. We also include a comparative analysis of the performance of the SMP photometry with respect to the real-timeDiffImg forced photometry and find that SMP photometry is more precise, more accurate, and less sensitive to the host-galaxy surface brightness anomaly. The public release of the light curves and ancillary data can be found atgithub.com/des-science/DES-SN5YR and doi:10.5281/zenodo.12720777 . -
ABSTRACT Extracting precise cosmology from weak lensing surveys requires modelling the non-linear matter power spectrum, which is suppressed at small scales due to baryonic feedback processes. However, hydrodynamical galaxy formation simulations make widely varying predictions for the amplitude and extent of this effect. We use measurements of Dark Energy Survey Year 3 weak lensing (WL) and Atacama Cosmology Telescope DR5 kinematic Sunyaev–Zel’dovich (kSZ) to jointly constrain cosmological and astrophysical baryonic feedback parameters using a flexible analytical model, ‘baryonification’. First, using WL only, we compare the $S_8$ constraints using baryonification to a simulation-calibrated halo model, a simulation-based emulator model, and the approach of discarding WL measurements on small angular scales. We find that model flexibility can shift the value of $S_8$ and degrade the uncertainty. The kSZ provides additional constraints on the astrophysical parameters, with the joint WL + kSZ analysis constraining $S_8=0.823^{+0.019}_{-0.020}$. We measure the suppression of the non-linear matter power spectrum using WL + kSZ and constrain a mean feedback scenario that is more extreme than the predictions from most hydrodynamical simulations. We constrain the baryon fractions and the gas mass fractions and find them to be generally lower than inferred from X-ray observations and simulation predictions. We conclude that the WL + kSZ measurements provide a new and complementary benchmark for building a coherent picture of the impact of gas around galaxies across observations.
-
Abstract We present cosmological constraints from the sample of Type Ia supernovae (SNe Ia) discovered and measured during the full 5 yr of the Dark Energy Survey (DES) SN program. In contrast to most previous cosmological samples, in which SNe are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscopic redshifts are acquired from a dedicated follow-up survey of the host galaxies. After accounting for the likelihood of each SN being an SN Ia, we find 1635 DES SNe in the redshift range 0.10 <
z < 1.13 that pass quality selection criteria sufficient to constrain cosmological parameters. This quintuples the number of high-qualityz > 0.5 SNe compared to the previous leading compilation of Pantheon+ and results in the tightest cosmological constraints achieved by any SN data set to date. To derive cosmological constraints, we combine the DES SN data with a high-quality external low-redshift sample consisting of 194 SNe Ia spanning 0.025 <z < 0.10. Using SN data alone and including systematic uncertainties, we find ΩM= 0.352 ± 0.017 in flat ΛCDM. SN data alone now require acceleration (q 0< 0 in ΛCDM) with over 5σ confidence. We find in flatw CDM. For flatw 0w a CDM, we find , consistent with a constant equation of state to within ∼2σ . Including Planck cosmic microwave background, Sloan Digital Sky Survey baryon acoustic oscillation, and DES 3 × 2pt data gives (ΩM,w ) = (0.321 ± 0.007, −0.941 ± 0.026). In all cases, dark energy is consistent with a cosmological constant to within ∼2σ . Systematic errors on cosmological parameters are subdominant compared to statistical errors; these results thus pave the way for future photometrically classified SN analyses. -
We present a measurement of the cross-correlation between themore » « less
MagLim galaxies selected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic microwave background (CMB) lensing from the Atacama Cosmology Telescope (ACT) Data Release 4 (DR4), reconstructed over ∼ 436 sq. deg of the sky. Our galaxy sample, which covers ∼ 4143 sq. deg, is divided into six redshift bins spanning the redshift range of 0.20 < z < 1.05. We adopt a blinding procedure until passing all consistency and systematics tests. After imposing scale cuts for the cross-power spectrum measurement, we reject the null hypothesis of no correlation at 9.1σ. We constrain cosmological parameters from a joint analysis of galaxy and CMB lensing-galaxy power spectra considering a flat ΛCDM model, marginalized over 23 astrophysical and systematic nuisance parameters. We find the clustering amplitude S_8 ≡ σ_8(Ω_m/0.3)^0.5 = 0.75+0.04-0.05. In addition, we constrain the linear growth of cosmic structure as a function of redshift. Our results are consistent with recent DES Y3 analyses and suggest a preference for a lower S_8 compared to results from measurements of CMB anisotropies by the Planck satellite, although at a mild level (< 2σ) of statistical significance.