skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gautam, Sujan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study the solar cycle dependence of various turbulence cascade rates based on the methodology developed by Adhikari et al. that utilizes Kolmogorov phenomenology. This approach is extended to derive the heating rates for an Iroshnikov–Kriachnan (IK) phenomenology. The observed turbulence cascade rates corresponding to the total turbulence energy, fluctuating magnetic energy density, fluctuating kinetic energy, and the normalized cross helicity are derived from WIND spacecraft plasma and magnetometer data from 1995 through 2020. We find that (i) the turbulence cascade rate derived from a Kolmogorov phenomenology and an IK phenomenology changes with solar cycle, such that the cascade rate is largest during solar maximum and smallest during solar minimum; (ii) the turbulence energy Kolmogorov cascade rate increases fromθUB(angle between mean magnetic field and velocity) = 0° to 90° and peaks nearθUB= 90°, and then decreases asθUBtends to 180°; (iii) the 2D turbulence heating rate is larger than the slab heating rate; (iv) the 2D and slab fluctuating magnetic energy density cascade rates are larger than the corresponding cascade rates of the fluctuating kinetic energy; and (v) the total turbulence energy cascade rate is positively correlated with the solar wind speed and temperature and the normalized cross-helicity cascade rate. Finally, we find that the total turbulent energy Kolmogorov cascade rate is larger than the IK cascade rate. 
    more » « less
  2. Abstract A multispecies energetic particle intensity enhancement event at 1 au is analyzed. We identify this event as a corotating interaction region (CIR) structure that includes a stream interface (SI), a forward-reverse shock pair, and an embedded heliospheric current sheet (HCS). The distinct feature of this CIR event is that (1) the high-energy (>1 MeV) ions show significant flux enhancement at the reverse wave (RW)/shock of the CIR structure, following their passage through the SI and HCS. The flux amplification appears to depend on the energy per nucleon. (2) Electrons in the energy range of 40.5–520 keV are accelerated immediately after passing through the SI and HCS regions, and the flux quickly reaches a peak for low-energy electrons. At the RW, only high-energy electrons (∼520 keV) show significant local flux enhancement. The CIR structure is followed by a fast-forward perpendicular shock driven by a coronal mass ejection (CME), and we observed a significant flux enhancement of low-energy protons and high-energy electrons. Specifically, the 210–330 keV proton and 180–520 keV electron fluxes are enhanced by approximately 2 orders of magnitude. This suggests that the later ICME-driven shock may accelerate particles out of the suprathermal pool. In this paper, we further present that for CIR-accelerated particles, the increase in turbulence power at SI and RWs may be an important factor for the observed flux enhancement in different species. The presence of ion-scale waves near the RW, as indicated by the spectral bump near the proton gyrofrequency, suggests that the resonant wave–particle interaction may act as an efficient energy transferrer between energetic protons and ion-scale waves. 
    more » « less
  3. Schornack, Sebastian (Ed.)
    The common rust disease of maize is caused by the obligate biotrophic fungusPuccinia sorghi. The maizeRp1-Dallele imparts resistance against theP.sorghiIN2 isolate by initiating a defense response that includes a rapid localized programmed cell death process, the hypersensitive response (HR). In this study, to identify AvrRp1-D fromP.sorghiIN2, we employed the isolation of haustoria, facilitated by a biotin-streptavidin interaction, as a powerful approach. This method proves particularly advantageous in cases where the genome information for the fungal pathogen is unavailable, enhancing our ability to explore and understand the molecular interactions between maize andP.sorghi. The haustorial transcriptome generated through this technique, in combination with bioinformatic analyses such as SignalP and TMHMM, enabled the identification of 251 candidate effectors. We ultimately identified two closely related genes,AvrRp1-D.1andAvrRp1-D.2, which triggered anRp1-D-dependent defense response inNicotiana benthamiana.AvrRp1-D-inducedRp1-D-dependent HR was further confirmed in maize protoplasts. We demonstrated that AvrRp1-D.1 interacts directly and specifically with the leucine-rich repeat (LRR) domain of Rp1-D through yeast two-hybrid assay. We also provide evidence that, in the absence of Rp1-D, AvrRp1-D.1 plays a role in suppressing the plant immune response. Our research provides valuable insights into the molecular interactions driving resistance against common rust in maize. 
    more » « less