skip to main content

Search for: All records

Creators/Authors contains: "Gayathri, V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The astrophysical origin of over 90 compact binary mergers discovered by the LIGO and Virgo gravitational wave observatories is an open question. While the unusual mass and spin of some of the discovered objects constrain progenitor scenarios, the observed mergers are consistent with multiple interpretations. A promising approach to solve this question is to consider the observed distributions of binary properties and compare them to expectations from different origin scenarios. Here we describe a new hierarchical population analysis framework to assess the relative contribution of different formation channels simultaneously. For this study we considered binary formation in active galactic nucleus (AGN) disks along with phenomenological models, but the same framework can be extended to other models. We find that high-mass and high-mass-ratio binaries appear more likely to have an AGN origin compared to having the same origin as lower-mass events. Future observations of high-mass black hole mergers could further disentangle the AGN component from other channels.

    more » « less
  2. Abstract As the Advanced LIGO and Advanced Virgo interferometers, soon to be joined by the KAGRA interferometer, increase their sensitivity, they detect an ever-larger number of gravitational waves with a significant presence of higher multipoles (HMs) in addition to the dominant (2, 2) multipole. These HMs can be detected with different approaches, such as the minimally-modeled burst search methods, and here we discuss one such approach based on the coherent WaveBurst (cWB) pipeline. During the inspiral phase the HMs produce chirps whose instantaneous frequency is a multiple of the dominant (2, 2) multipole, and here we describe how cWB can be used to detect these spectral features. The search is performed within suitable regions of the time-frequency representation; their shape is determined by optimizing the receiver operating characteristics. This novel method has already been used in the GW190814 discovery paper (Abbott et al 2020 Astrophys. J. Lett. 896 L44) and is very fast and flexible. Here we describe in full detail the procedure used to detect the (3, 3) multipole in GW190814 as well as searches for other HMs during the inspiral phase, and apply it to another event that displays HMs, GW190412, replicating the results obtained with different methods. The procedure described here can be used for the fast analysis of HMs and to support the findings obtained with the model-based Bayesian parameter estimates. 
    more » « less
  3. Abstract The global network of gravitational-wave detectors has completed three observing runs with ∼50 detections of merging compact binaries. A third LIGO detector, with comparable astrophysical reach, is to be built in India (LIGO-Aundha) and expected to be operational during the latter part of this decade. Such additions to the network increase the number of baselines and the network SNR of GW events. These enhancements help improve the sky-localization of those events. Multiple detectors simultaneously in operation will also increase the baseline duty factor, thereby, leading to an improvement in the detection rates and, hence, the completeness of surveys. In this paper, we quantify the improvements due to the expansion of the LIGO global network in the precision with which source properties will be measured. We also present examples of how this expansion will give a boost to tests of fundamental physics. 
    more » « less
  4. Abstract The coherent WaveBurst (cWB) pipeline implements a minimally-modelled search to find a coherent response in the network of gravitational wave detectors of the LIGO-Virgo Col-laboration in the time-frequency domain. In this manuscript, we provide a timely introduction to an extension of the cWB analysis to detect spectral features beyond the main quadrupolar emission of gravitational waves during the inspiral phase of compact binary coalescences; more detailed discussion will be provided in a forthcoming paper [1]. The search is performed by defining specific regions in the time-frequency map to extract the energy of harmonics of main quadrupole mode in the inspiral phase. This method has already been used in the GW190814 discovery paper (Astrophys. J. Lett. 896 L44). Here we show the procedure to detect the (3, 3) multipole in GW190814 within the cWB framework. 
    more » « less
  5. null (Ed.)