skip to main content

Search for: All records

Creators/Authors contains: "Ge, Li"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. Abstract

    Recent studies on exceptional points (EPs) in non-Hermitian optical systems have revealed unique traits, including unidirectional invisibility, chiral mode switching and laser self-termination. In systems featuring gain/loss components, EPs are commonly accessed below the lasing threshold, i.e., in the linear regime. In this work, we experimentally demonstrate that EP singularities in coupled semiconductor nanolasers can be accessed above the lasing threshold, where they become branch points of a nonlinear dynamical system. Contrary to the common belief that unavoidable cavity detuning impedes the formation of EPs, here we demonstrate that such detuning is necessary for compensating the carrier-induced frequency shift, hence restoring the EP. Furthermore, we find that the pump imbalance at lasing EPs varies with the total pump power, enabling their continuous tracking. This work uncovers the unstable nature of EPs above laser threshold in coupled semiconductor lasers, offering promising opportunities for the realization of self-pulsing nanolaser devices and frequency combs.

    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Free, publicly-accessible full text available November 1, 2024
  4. Free, publicly-accessible full text available June 1, 2024
  5. Free, publicly-accessible full text available March 1, 2024
  6. Zero modes are symmetry protected ones whose energy eigenvalues have zero real parts. In Hermitian arrays, they arise as a consequence of the sublattice symmetry, implying that they are dark modes. In non-Hermitian systems that naturally emerge in gain/loss optical cavities, particle-hole symmetry prevails instead; the resulting zero modes are no longer dark but featureπ/2phase jumps between adjacent cavities. Here, we report on the direct observation of zero modes in a non-Hermitian three coupled photonic crystal nanocavities array containing quantum wells. Unlike the Hermitian counterparts, the observation of non-Hermitian zero modes upon single pump spot illumination requires vanishing sublattice detuning, and they can be identified through far-field imaging and spectral filtering of the photoluminescence at selected pump locations. We explain the zero-mode coalescence as a parity-time phase transition for small coupling. These zero modes are robust against coupling disorder and can be used for laser mode engineering and photonic computing.

    more » « less