skip to main content

Search for: All records

Creators/Authors contains: "Geller, Aaron M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Sub-subgiant stars (SSGs) fall below the subgiant branch and/or red of the giant branch in open and globular clusters, an area of the color–magnitude diagram (CMD) not populated by standard stellar evolution tracks. One hypothesis is that SSGs result from rapid rotation in subgiants or giants due to tidal synchronization in a close binary. The strong magnetic fields generated inhibit convection, which in turn produces large starspots, radius inflation, and lower-than-expected average surface temperatures and luminosities. Here we cross-reference a catalog of active giant binaries (RS CVns) in the field with Gaia EDR3. Using the Gaia photometry and parallaxes, we precisely position the RS CVns in a CMD. We identify stars that fall below a 14 Gyr, metal-rich isochrone as candidate field SSGs. Out of a sample of 1723 RS CVn, we find 448 SSG candidates, a dramatic expansion from the 65 SSGs previously known. Most SSGs have rotation periods of 2–20 days, with the highest SSG fraction found among RS CVn with the shortest periods. The ubiquity of SSGs among this population indicates that SSGs are a normal phase in evolution for RS CVn-type systems, not rare by-products of dynamical encounters found only in dense star clusters asmore »some have suggested. We present our catalog of 1723 active giants, including Gaia photometry and astrometry, and rotation periods from the Transiting Exoplanet Survey Satellite and International Variable Star Index (VSX). This catalog can serve as an important sample to study the impacts of magnetic fields in evolved stars.

    « less
  2. ABSTRACT At least $70\, {\rm per\, cent}$ of massive OBA-type stars reside in binary or higher order systems. The dynamical evolution of these systems can lend insight into the origins of extreme phenomena such as X-ray binaries and gravitational wave sources. In one such dynamical process, the Eccentric Kozai–Lidov (EKL) mechanism, a third companion star alters the secular evolution of a binary system. For dynamical stability, these triple systems must have a hierarchical configuration. We explore the effects of a distant third companion’s gravitational perturbations on a massive binary’s orbital configuration before significant stellar evolution has taken place (≤10 Myr). We include tidal dissipation and general relativistic precession. With large (38 000 total) Monte Carlo realizations of massive hierarchical triples, we characterize imprints of the birth conditions on the final orbital distributions. Specifically, we find that the final eccentricity distribution over the range of 0.1–0.7 is an excellent indicator of its birth distribution. Furthermore, we find that the period distributions have a similar mapping for wide orbits. Finally, we demonstrate that the observed period distribution for approximately 10-Myr-old massive stars is consistent with EKL evolution.